Previous |  Up |  Next

Article

Keywords:
weakly $s$-permutably embedded subgroups; $p$-nilpotent; $n$-maximal subgroup
Summary:
Suppose $G$ is a finite group and $H$ is a subgroup of $G$. $H$ is said to be $s$-permutably embedded in $G$ if for each prime $p$ dividing $|H|$, a Sylow $p$-subgroup of $H$ is also a Sylow $p$-subgroup of some $s$-permutable subgroup of $G$; $H$ is called weakly $s$-permutably embedded in $G$ if there are a subnormal subgroup $T$ of $G$ and an $s$-permutably embedded subgroup $H_{se}$ of $G$ contained in $H$ such that $G=HT$ and $H\cap T\leq H_{se}$. We investigate the influence of weakly $s$-permutably embedded subgroups on the $p$-nilpotency and $p$-supersolvability of finite groups.
References:
[1] Kegel O.H.: Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205–221. MR 0147527
[2] Ballester-Bolinches A., Pedraza-Aguilera M.C.: Sufficient conditions for supersolvability of finite groups. J. Pure Appl. Algebra 127 (1998), 113–118. DOI 10.1016/S0022-4049(96)00172-7 | MR 1620696
[3] Wang Y.: $c$-Normality of groups and its properties. J. Algebra 180 (1996), 954–965. DOI 10.1006/jabr.1996.0103 | MR 1379219 | Zbl 0847.20010
[4] Wang Y., Wei H., Li Y.: A generalization of Kramer's theorem and its application. Bull. Austral. Math. Soc. 65 (2002), 467–475. DOI 10.1017/S0004972700020517
[5] Skiba A.N.: On weakly $s$-permutable subgroups of finite groups. J. Algebra 315 (2007), 192–209. DOI 10.1016/j.jalgebra.2007.04.025 | MR 2344341 | Zbl 1130.20019
[6] Robinson D.J.S.: A Course in the Theory of Groups. Spinger, New York, 1982. MR 0648604 | Zbl 0836.20001
[7] Li Y., Qiao S., Wang Y.: On weakly $s$-permutably embedded subgroups of finite groups. Comm. Algebra 37 (2009), 1086–1097. DOI 10.1080/00927870802231197 | MR 2503195 | Zbl 1177.20036
[8] Doerk K., Hawkes T.: Finite Soluble Groups. Walter de Gruyter, Berlin-New York, 1992. MR 1169099 | Zbl 0753.20001
[9] Li Y., Wang Y., Wei H.: On $p$-nilpotency of finite groups with some subgroups $\pi$-quasinormally embedded. Acta. Math. Hungar. 108 (2005), 283–298. DOI 10.1007/s10474-005-0225-8 | MR 2164692 | Zbl 1094.20007
[10] Asaad M., Heliel A.A.: On $s$-quasinormally embedded subgroups of finite groups. J. Pure Appl. Algebra 165 (2001), 129–135. DOI 10.1016/S0022-4049(00)00183-3 | MR 1865961 | Zbl 1011.20019
[11] Huppert B.: Endiche Gruppen I. Springer, Berlin, 1968. MR 0224703
[12] Guo W.: The Theory of Classes of Groups. Science Press-Kluwer Academic Publishers, Beijing-Boston, 2000. MR 1862683 | Zbl 1005.20016
[13] Guo X., Shum K.P.: On $c$-normal maximal and minimal subgroups of Sylow $p$-subgroups of finite groups. Arch. Math. 80 (2003), 561–569. DOI 10.1007/s00013-003-0810-4 | MR 1997521 | Zbl 1050.20010
[14] Ramadan M., Mohamed M.E., Heliel A.A.: On $c$-normality of certain subgroups of prime power order of finite groups. Arch. Math. 85 (2005), 203–210. DOI 10.1007/s00013-005-1330-1 | MR 2172378 | Zbl 1082.20008
[15] Heliel A.A., Alharbia S.M.: The infuence of certain permutable subgroups on the structure of finite groups. Int. J. Algebra 4 (2010), 1209–1218. MR 2772496
[16] Wei H., Wang Y.: On $c^{\ast}$-normality and its properties. J. Group Theory 10 (2007), 211–223. MR 2302616 | Zbl 1173.20014
[17] Li S., Li Y.: On $s$-quasionormal and $c$-normal subgroups of a finite group. Czechoslovak. Math. J. 58 (2008), 1083–1095. DOI 10.1007/s10587-008-0070-3
[18] Schmidt P.: Subgroups permutable with all Sylow subgroups. J. Algebra 207 (1998), 285–293. DOI 10.1006/jabr.1998.7429 | MR 1643106
[19] Li Y., Qiao S., Wang Y.: A note on a result of Skiba. Siberian Math. J. 50 (2009), 467–473. DOI 10.1007/s11202-009-0052-1
[20] Miao L.: On weakly $s$-permutable subgroups. Bull. Braz. Math. Soc., New Series 41 (2010), 223–235. DOI 10.1007/s00574-010-0011-2 | MR 2738912
Partner of
EuDML logo