Previous |  Up |  Next

Article

Keywords:
linearized elasticity; singularities at the crack tip; interfacial crack; non-penetration condition; Coulomb friction
Summary:
We study a model of interfacial crack between two bonded dissimilar linearized elastic media. The Coulomb friction law and non-penetration condition are assumed to hold on the whole crack surface. We define a weak formulation of the problem in the primal form and get the equivalent primal-dual formulation. Then we state the existence theorem of the solution. Further, by means of Goursat-Kolosov-Muskhelishvili stress functions we derive convergent expansions of the solution near the crack tip.
References:
[1] Andersson, L.-E.: Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim. 42 (2000), 169-202. DOI 10.1007/s002450010009 | MR 1784173 | Zbl 0972.35058
[2] Audoly, B.: Asymptotic study of the interfacial crack with friction. J. Mech. Phys. Solids 48 (2000), 1851-1864. DOI 10.1016/S0022-5096(99)00098-8 | Zbl 0963.74048
[3] Bach, M., Khludnev, A. M., Kovtunenko, V. A.: Derivatives of the energy functional for 2D-problems with a crack under Signorini and friction conditions. Math. Methods Appl. Sci. 23 (2000), 515-534. DOI 10.1002/(SICI)1099-1476(200004)23:6<515::AID-MMA122>3.0.CO;2-S | MR 1748320 | Zbl 0954.35076
[4] Bui, H. D., Oueslati, A.: The sliding interface crack with friction between elastic and rigid bodies. J. Mech. Phys. Solids 53 (2005), 1397-1421. DOI 10.1016/j.jmps.2004.12.007 | MR 2137068 | Zbl 1120.74744
[5] Comninou, M.: An overview of interface crack. Eng. Fract. Mech. 37 (1990), 197-208. DOI 10.1016/0013-7944(90)90343-F
[6] Comninou, M., Dundurs, J.: Effect of friction on the interface crack loaded in shear. J. Elasticity 10 (1980), 203-212. DOI 10.1007/BF00044504 | MR 0576168 | Zbl 0457.73098
[7] Dundurs, J., Comninou, M.: Some consequences of the inequality conditions in contact and crack problems. J. Elasticity 9 (1979), 71-82. DOI 10.1007/BF00040981 | Zbl 0393.73117
[8] Eck, Ch., Jarušek, J., Krbec, M.: Unilateral Contact Problems. Chapman&Hall/CRC Boca Raton (2005). MR 2128865 | Zbl 1079.74003
[9] England, A. H.: Complex Variable Methods in Elasticity. John Wiley & Sons London (1971). MR 0464824 | Zbl 0222.73017
[10] Fichera, G.: Existence theorems in elasticity. Mechanics of Solids Vol. II C. Truesdell Springer Berlin (1984), 347-389.
[11] Haslinger, J., Kučera, J., Vlach, O.: Bifurcations in contact problems with local Coulomb friction. Num. Math. Adv. Appl. K. Kunisch, G. Of, O. Steinbach Springer Berlin (2008), 811-818. DOI 10.1007/978-3-540-69777-0_97 | MR 3615958 | Zbl 1155.74032
[12] Hild, P.: Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity. Q. J. Mech. Appl. Math. 57 (2004), 225-235. DOI 10.1093/qjmam/57.2.225 | MR 2068404 | Zbl 1059.74042
[13] Hintermüller, M., Kovtunenko, V. A., Kunisch, K.: Obstacle problems with cohesion: A hemi-variational inequality approach and its efficient numerical solution. MATHEON Report 687 DFG-Forschungszentrum, TU-Berlin Berlin (2010). MR 2817476
[14] Hüeber, S., Stadler, G., Wohlmuth, B. I.: A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J. Sci. Comput. 30 (2008), 572-596. DOI 10.1137/060671061 | MR 2385876 | Zbl 1158.74045
[15] Ikehata, M., Itou, H.: Reconstruction of a linear crack in an isotropic elastic body from a single set of measured data. Inverse Probl. 23 (2007), 589-607. DOI 10.1088/0266-5611/23/2/008 | MR 2309665 | Zbl 1115.35149
[16] Ikehata, M., Itou, H.: Extracting the support function of a cavity in an isotropic elastic body from a single set of boundary data. Article ID 105005. Inverse Probl. 25 (2009), 1-21. MR 2545974
[17] Itou, H., Tani, A.: A boundary value problem for an infinite elastic strip with a semi-infinite crack. J. Elasticity 66 (2002), 193-206. DOI 10.1023/A:1021903404039 | MR 1956323 | Zbl 1018.74033
[18] Kato, Y.: Signorini's problem with friction in linear elasticity. Japan J. Appl. Math. 4 (1987), 237-268. DOI 10.1007/BF03167776 | MR 0899912 | Zbl 0627.73098
[19] Khludnev, A. M., Kovtunenko, V. A.: Analysis of Cracks in Solids. WIT-Press Southampton, Boston (2000).
[20] Khludnev, A. M., Kovtunenko, V. A., Tani, A.: Evolution of a crack with kink and non-penetration. J. Math. Soc. Japan 60 (2008), 1219-1253. DOI 10.2969/jmsj/06041219 | MR 2467876 | Zbl 1153.49040
[21] Khludnev, A. M., Kovtunenko, V. A., Tani, A.: On the topological derivative due to kink of a crack with non-penetration. J. Math. Pures Appl. 94 (2010), 571-596. DOI 10.1016/j.matpur.2010.06.002 | MR 2737389 | Zbl 1203.49035
[22] Khludnev, A. M., Kozlov, V. A.: Asymptotics of solutions near crack tips for Poisson equation with inequality type boundary conditions. Z. Angew. Math. Phys. 59 (2008), 264-280. DOI 10.1007/s00033-007-6032-z | MR 2400558 | Zbl 1138.74043
[23] Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Philadelphia (1988). MR 0961258 | Zbl 0685.73002
[24] Kovtunenko, V. A.: Crack in a solid under Coulomb friction law. Appl. Math. 45 (2000), 265-290. DOI 10.1023/A:1022319428441 | MR 1763172 | Zbl 1058.74064
[25] Kravchuk, A. S.: Variational and Quasivariational Inequations in Mechanics. MGAPI Moscow (1997), Russian.
[26] Maz'ya, V., Nazarov, S., Plamenevskii, B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. II. Birkhäuser Basel (2000). MR 1779978 | Zbl 1127.35301
[27] Muskhelishvili, N. I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff Groningen (1963). MR 0176648 | Zbl 0124.17404
[28] Nečas, J., Jarušek, J., Haslinger, J.: On the solution of the variational inequality to the Signorini problem with small friction. Boll. Unione Mat. Ital. 17-B (1980), 796-811. MR 0580559
[29] Renard, Y.: A uniqueness criterion for the Signorini problem with Coulomb friction. SIAM J. Math. Anal. 38 (2006), 452-467. DOI 10.1137/050635936 | MR 2237156 | Zbl 1194.74225
[30] Rice, J. R.: Elastic fracture mechanics concepts for interfacial cracks. J. Appl. Mech. 55 (1988), 98-103. DOI 10.1115/1.3173668
[31] Shillor, M., Sofonea, M., Telega, J.: Models and Analysis of Quasistatic Contact. Springer Berlin (2004). Zbl 1069.74001
[32] Toupin, R. A.: Saint-Venant's principle. Arch. Ration. Mech. Anal. 18 (1965), 83-96. DOI 10.1007/BF00282253 | MR 0172506 | Zbl 0203.26803
Partner of
EuDML logo