[3] Gates, S. J., Hull, C. M., Ročcek, M.:
Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B 248 (1) (1984), 157–186.
MR 0776369
[4] Göteman, M., Lindström, U.: Pseudo-hyperkahler Geometry and Generalized Kahler Geometry. to be published in Lett. Math. Phys., arXiv:0903.2376 [hep-th].
[5] Göteman, M., Lindström, U., Roček, M., Ryb, I.: Sigma models with off–shell $N=(4,4)$ supersymmetry and noncommuting complex structures. arXiv:0912.4724 [hep-th].
[6] Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford University, 2004, [math/0401221[math-dg]].
[11] Lindström, U., Roček, M., von Unge, R., Zabzine, M.:
Linearizing generalized Kähler geometry. JHEP 0704 (2007), 28pp., [arXiv:hep-th/0702126].
MR 2318766
[12] Yano, K.: On a structure $f$ satisfying $f^3+f=0$. Tech. Rep. Univ. of Washington 12 (1961).
[13] Yano, K.:
On a structure defined by a tensor field of type $(1,1)$ satisfying $f^3+f=0$. Tensor N. S. 14 (1963), 9.
MR 0159296