Previous |  Up |  Next

Article

Keywords:
supersymmetry; complex geometry
Summary:
We discuss additional supersymmetries for $\mathcal{N}=(2,2)$ supersymmetric non-linear sigma models described by left and right semichiral superfields.
References:
[1] Abou–Zeid, M., Hull, C. M.: The geometry of sigma-models with twisted supersymmetry. Nucl. Phys. B 561 (1999), 293–315, [arXiv:hep-th/9907046]. DOI 10.1016/S0550-3213(99)00528-3 | MR 1729245
[2] Buscher, T., Lindström, U., Roček, M.: New supersymmetric sigma models with Wess-Zumino terms. Phys. Lett. B 202 (1988), 94–98. DOI 10.1016/0370-2693(88)90859-3 | MR 0930852
[3] Gates, S. J., Hull, C. M., Ročcek, M.: Twisted multiplets and new supersymmetric nonlinear sigma models. Nuclear Phys. B 248 (1) (1984), 157–186. MR 0776369
[4] Göteman, M., Lindström, U.: Pseudo-hyperkahler Geometry and Generalized Kahler Geometry. to be published in Lett. Math. Phys., arXiv:0903.2376 [hep-th].
[5] Göteman, M., Lindström, U., Roček, M., Ryb, I.: Sigma models with off–shell $N=(4,4)$ supersymmetry and noncommuting complex structures. arXiv:0912.4724 [hep-th].
[6] Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford University, 2004, [math/0401221[math-dg]].
[7] Lindström, U.: Generalized $N = (2,2)$ supersymmetric non-linear sigma models. Phys. Lett. B 587 (2004), 216–224, [arXiv:hep-th/0401100]. DOI 10.1016/j.physletb.2004.03.014 | MR 2065031
[8] Lindström, U., Ivanov, I. T., Roček, M.: New N=4 superfields and sigma models. Phys. Lett. B 328 (1994), 49–54, [arXiv:hep-th/9401091]. DOI 10.1016/0370-2693(94)90426-X | MR 1288922
[9] Lindström, U., Minasian, R., Tomasiello, A., Zabzine, M.: Generalized complex manifolds and supersymmetry. Commun. Math. Phys. 257 (2005), 235–256. DOI 10.1007/s00220-004-1265-6 | MR 2163575 | Zbl 1118.53048
[10] Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Generalized Kaehler manifolds and off-shell supersymmetry. Commun. Math. Phys. 269 (2007), 833–849. DOI 10.1007/s00220-006-0149-3 | MR 2276362 | Zbl 1114.81077
[11] Lindström, U., Roček, M., von Unge, R., Zabzine, M.: Linearizing generalized Kähler geometry. JHEP 0704 (2007), 28pp., [arXiv:hep-th/0702126]. MR 2318766
[12] Yano, K.: On a structure $f$ satisfying $f^3+f=0$. Tech. Rep. Univ. of Washington 12 (1961).
[13] Yano, K.: On a structure defined by a tensor field of type $(1,1)$ satisfying $f^3+f=0$. Tensor N. S. 14 (1963), 9. MR 0159296
Partner of
EuDML logo