Previous |  Up |  Next

Article

References:
[1] Havránek, A., Čertík, O.: Pružné kyvadlo. PMFA 51 (2006), 198–216.
[2] Olsson, M. G.: Why does a mass on a spring sometimes misbehave?. Am. J. Phys 44 (1976), No. 12, 1211–1212.
[3] Rusbridge, M. G.: Motion of the sprung pendulum. Am. J. Phys. 48 (1980), No. 2, 146–151. MR 0558774
[4] Breitenberger, E., Mueller, R. D.: The elastic pendulum: A nonlinear paradigm. J. Math. Phys. 22 (1981), No. 6, 1196–1210. MR 0621262 | Zbl 0464.70025
[5] Lai, H. M.: On the recurrence phenomenon of a resonant spring pendulum. Am. J. Phys. 52 (1984), No. 3, 219–223.
[6] Aničin, B. A., Davidović, D. M., Babović, V. M.: On the linear theory of the elastic pendulum. Eur. J. Phys. 14 (1993), 132–135.
[7] Davidović, D. M., Aničin, B. A., Babović, V. M.: The libration limits of the elastic pendulum. Am. J. Phys. 64 (1996), No. 3, 338–342.
[8] Kuznetsov, S. V.: The motion of the elastic pendulum. Regular and Chaotic Dynamics 4 (1999), No. 3, 3–12. MR 1777873 | Zbl 1137.70358
[9] Press, W. H. et. al.: Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge Univ. Press, Cambridge 1992. MR 1196230 | Zbl 0778.65002
[10] Brdička, M., Hladík, A.: Teoretická mechanika. Academia, Praha 1987. MR 0934921
[11] Abramowitz, M., Stegun, A.: Handbook of Mathematical Functions. Dower Publications, N. Y. 1970.
[12] Landau, L. D., Lifšic, E. M.: Mechanika. Nauka, Moskva 1973.
[13] Landau, L. D., Lifšic, E. M.: Úvod do teoretickej fyziky 1. Alfa, Bratislava 1980.
[14] Hluší, S.: Parametrická resonance aneb Fyzika na houpačce. Diplomová práce. MFF UK, Praha 2000.
[15] Lynch, P.: Resonant motion of the three-dimensional elastic pendulum. Int. J. Nonlin. Mech. 37 (2002), 345–367.
[16] Lynch, P.: The swinging spring. Webové stránky dostupné na adrese http://www.maths.tcd.ie/~plynch/SwingingSpring/SS_Home_Page.html [cit. 31. 5. 2006].
[17] Christensen, J.: An improved calculation of the mass for the resonant spring pendulum. Am. J. Phys. 72 (2004), No. 6, 818–828.
[18] Properties of the nonlinear elastic pendulum. Dostupné na webu na adrese http://academic.reed.edu/physics/courses/phys100/Lab%20Manuals/ Nonlinear%20Pendulum/nonlinear.pdf [cit. 31. 5. 2006]. Patří do projektů kurzu General Physics na Reed College — viz http://academic.reed.edu/physics/courses/phys100/fallsemester.html [cit. 31. 5. 2006].
[19] Tuwankotta, J. M., Quispel, G. R. W.: Geometric numerical integration applied to the elastic pendulum at higher-order resonance. J. Comp. Appl. Math. 154 (2003), 229–242. MR 1970537 | Zbl 1107.37309
Partner of
EuDML logo