[2] Berg, C., Christensen, J. P. R., Ressel, P.:
Harmonic Analysis on Semigroups. Springer-Verlag, New York 1984.
MR 0747302 |
Zbl 0619.43001
[3] Bertero, M.: Linear inverse and ill-posed problems. Advances in Electronics and Electron Physics 75 (1989), 1–120.
[4] Bjorck, A.:
Numerical methods for least squares problem. SIAM 1996.
MR 1386889
[7] Girosi, F.:
An equivalence between sparse approximation and support vector machines. Neural Computation 10 (1998), 1455–1480 (AI Memo No 1606, MIT).
DOI 10.1162/089976698300017269
[8] Groetch, C. W.: Generalized Inverses of Linear Operators. Dekker, New York 1977.
[9] Kůrková, V.: High-dimensional approximation by neural networks. Chapter 4 in Advances in Learning Theory: Methods, Models and Applications (J. Stuykens et al., ed.) (2003), 69–88. IOS Press, Amsterdam.
[10] Kůrková, V.:
Learning from data as an inverse problem. In Proc. of COMPSTAT 2004 (J. Antoch, ed.), Physica-Verlag, Heidelberg, 1377–1384.
MR 2173152
[11] Kůrková, V., Sanguineti, M.:
Error estimates for approximate optimization by the extended Ritz method. SIAM J. Optim. (to appear).
MR 2144176
[12] Kůrková, V., Sanguineti, M.:
Learning with generalization capability by kernel methods with bounded complexity. J. Compl. (to appear).
MR 2138445
[13] Moore, E. H.: Abstract. Bulletin AMS 26 (1920), 394–395.
[16] Penrose, R.:
A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 52 (1955), 406–413.
MR 0069793 |
Zbl 0065.24603
[17] Poggio, T., Girosi, F.: Networks for approximation and learning. Proc. IEEE 78 (1990), 1481–1497.
[18] Poggio, T., Smale, S.:
The mathematics of learning: dealing with data. Notices Amer. Math. Soc. 50 (2003), 536–544.
MR 1968413 |
Zbl 1083.68100
[19] Sejnowski, T. J., Rosenberg, C.:
Parallel networks that learn to pronounce English text. Complex Systems 1 (1987), 145–168.
Zbl 0655.68107
[20] Tichonov, A. N., Arsenin, V. Y.: Solutions of Ill-posed Problems. W. H. Winston, Washington, D. C. 1977.
[21] Wahba, G.:
Splines Models for Observational Data. SIAM, Philadelphia 1990.
MR 1045442
[22] Werbos, P. J.: Backpropagation: Basics and New Developments. The Handbook of Brain Theory and Neural Networks (M. Arbib, ed.), 134–139. MIT Press, Cambridge 1995.