Previous |  Up |  Next

Article

Keywords:
prime number; arithmetic progression
References:
[1] Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. http://www.cse.iitk.ac.in/news/primality.html Zbl 1071.11070
[2] Bečvářová, M.: Eukleidovy Základy. Jejich vydání a překlady. Prometheus, Praha 2002. MR 1929927 | Zbl 1024.01030
[3] Brun, V.: Le crible d’Eratosthène et le théorème de Goldbach. C. R. Acad. Sci. Paris 168 (1919), 544–546.
[4] Crandall, R., Pomerance, C.: Prime Numbers. A Computational Perspective. Springer-Verlag, New York 2001. MR 1821158
[5] Davis, M.: Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly 80 (1973), 233–269. DOI 10.2307/2318447 | MR 0317916
[6] Dirichlet, P. G. L.: Beweis des Satzes, daß jede unbegrenzte aritmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abh. Akad. Berlin (1837), 45–71.
[7] Edwards, H. M.: Riemann’s zeta function. Academic Press, New York-London 1974. MR 0466039 | Zbl 0315.10035
[8] Edwards, H. M.: Fermat’s last theorem. A genetic introduction to algebraic number theory. Springer-Verlag, New York 1977. MR 0616635 | Zbl 0355.12001
[9] Erdős, P.: On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 374–384. DOI 10.1073/pnas.35.7.374 | MR 0029411
[10] Friedlander, J., Iwaniec, H.: The polynomial ${X^2+Y^4}$ captures its primes. Ann. of Math. (2) 148 (1998), 945–1040. MR 1670065
[11] Friedlander, J., Iwaniec, H.: Asymptotic sieve for primes. Ann. of Math. (2) 148 (1998), 1041–1065. MR 1670069 | Zbl 0926.11067
[12] Furstenberg, H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 (1977), 204–256. MR 0498471 | Zbl 0347.28016
[13] Furstenberg, H., Katznelson, Y., Ornstein, D.: The ergodic theoretical proof of Szemerédi’s theorem. Bull. Amer. Math. Soc. (N. S.) 7 (1982), 527–552. DOI 10.1090/S0273-0979-1982-15052-2 | MR 0670131
[14] Goldstein, L. J.: A history of the prime number theorem. Amer. Math. Monthly 80 (1973), 599–615. DOI 10.2307/2319162 | MR 0313171 | Zbl 0272.10001
[15] Goldston, D., Yildirim, C. Y.: Higher correlations of divisor sums related to primes, I: Triple correlations. Integers 3 (2003), 66 s. MR 1985667 | Zbl 1118.11039
[16] Goldston, D., Yildirim, C. Y.: Higher correlations of divisor sums related to primes, III: $k$-correlations. arXiv:math.NT/0209102, 32 s.
[17] Goldston, D., Yildirim, C. Y.: Small gaps between primes. Preprint.
[18] Gowers, W. T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11 (2001), 465–588. DOI 10.1007/s00039-001-0332-9 | MR 1844079 | Zbl 1028.11005
[19] Gowers, T.: Vinogradov’s Three-Primes Theorem. 17 s. http://www.dpmms.cam.ac.uk/~wtg10/
[20] Greaves, G.: Sieves in number theory. Springer-Verlag, Berlin 2001. MR 1836967 | Zbl 1003.11044
[21] Green, B., Tao, T.: The primes contain arbitrarily long arithmetic progressions. arXiv:math.NT/0404188 (verze 1 z 8. dubna 2004), 49 s. MR 2415379
[22] Heath-Brown, D. R.: Primes represented by ${x^3+2y^3}$. Acta Math. 186 (2001), 1–84. DOI 10.1007/BF02392715 | MR 1828372 | Zbl 1007.11055
[23] Chen, J.: On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 17 (1966), 385–386. MR 0207668
[24] Chen, J.: On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 (1973), 157–176. MR 0434997
[25] Křížek, M.: Od Fermatových prvočísel ke geometrii. In: Šolcová, A., Křížek, M., Mink, G., editoři, Matematik Pierre de Fermat. Cahiers du CEFRES č. 28, 131–161. CEFRES, Praha 2002.
[26] Křížek, M., Luca, F., Somer, L.: 17 lectures on Fermat numbers. From number theory to geometry. Springer-Verlag, New York 2001. MR 1866957 | Zbl 1010.11002
[27] Kučera, L.: Kombinatorické algoritmy. SNTL, Praha 1983.
[28] Levinson, N.: A motivated account of an elementary proof of the prime number theorem. Amer. Math. Monthly 76 (1969), 225–245. DOI 10.2307/2316361 | MR 0241372 | Zbl 0172.06001
[29] Matijasevič, Ju. V.: Diofantovosť perečislimych množestv. Dokl. Akad. Nauk SSSR 191 (1970), 279–282.
[30] Matijasevič, Ju. V.: Diofantovo predstavlenie množestva prostych čisel. Dokl. Akad. Nauk SSSR 196 (1971), 770–773.
[31] Matijasevič, Ju. V.: Hilbert’s tenth problem. MIT Press, Cambridge, MA 1993.
[32] Nathanson, M. B.: Additive Number Theory. The Classical Bases. Springer-Verlag, New York 1996. MR 1395371 | Zbl 0859.11002
[33] Nathanson, M. B.: Elementary Methods in Number Theory. Springer-Verlag, New York 2000. MR 1732941 | Zbl 0953.11002
[34] Novák, B.: O elementárním důkazu prvočíselné věty. Časopis pro pěstování matematiky 100 (1975), 71–84.
[35] Papadimitriou, Ch. H.: Computational Complexity. Addison-Wesley, Reading, MA 1994. MR 1251285 | Zbl 0833.68049
[36] Porubský, Š.: Fermat a teorie čísel. In: Šolcová, A., Křížek, M., Mink, G., editoři, Matematik Pierre de Fermat. Cahiers du CEFRES č. 28, 49–86. CEFRES, Praha 2002.
[37] Pratt, V. R.: Every prime has a succinct certificate. SIAM J. Comput. 4 (1975), 214–220. DOI 10.1137/0204018 | MR 0391574 | Zbl 0316.68031
[38] Rabin, M. O.: Probabilistic Algorithms. In: J. F. Traub, editor, Algorithms and Complexity, 21–39. Academic Press, New York 1976. MR 0464678 | Zbl 0384.60001
[39] Riemann, B.: Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsberichte der Berliner Akademie (1859), 671–680.
[40] Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21 1978, 120–126. DOI 10.1145/359340.359342 | MR 0700103 | Zbl 0368.94005
[41] Selberg, A.: An elementary proof of the prime-number theorem. Ann. of Math. (2) 50 (1949), 305–313. DOI 10.2307/1969455 | MR 0029410 | Zbl 0036.30604
[42] Serre, J.-P.: A Course in Arithmetics. Springer-Verlag, New York 1973. MR 0344216
[43] Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994), 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA 1994. MR 1489242
[44] Schnirelmann, L.: Über additive Eigenschaften von Zahlen. Mat. Ann. 107 (1933), 649–690. DOI 10.1007/BF01448914 | MR 1512821 | Zbl 0006.10402
[45] Stillwell, J.: Elements of algebra. Geometry, numbers, equations. Springer-Verlag, New York 1994. MR 1311026 | Zbl 0832.00001
[46] Szemerédi, E.: On sets of integers containing no $k$ elements in arithmetic progression. Acta Arith. 27 (1975), 199–245. MR 0369312
[47] Šnireľman, L. G.: Ob additivnych svojstvach čisel. Izvestija donskogo politechničeskogo instituta v Novočerkasske 14 (1930), 3–28.
[48] Tao, T.: A quantitative ergodic theory proof of Szemerédi’s theorem. arXiv:math.CO/0405251, 51 s. Zbl 1127.11011
[49] Tao, T.: A quantitative ergodic theory proof of Szemerédi’s theorem (abridged). 20 s. http://www.math.ucla.edu/~tao/preprints/
[50] Tao, T.: A bound for progressions of length $k$ in the primes. 4 s. http://www.math.ucla.edu/~tao/preprints/
[51] Tao, T.: A remark on Goldston-Yildirim correlation estimates. 8 s. http://www.math.ucla.edu/~tao/preprints/
[52] Tenenbaum, G.: Introduction to analytic and probabilistic number theory. Cambridge University Press, Cambridge, U. K. 1995. MR 1342300 | Zbl 0880.11001
[53] Vinogradov, I. M.: Predstavlenie něčotnogo čisla summoj trjoch prostych čisel. Dokl. Akad. Nauk SSSR 15 (1937), 291–294.
[54] Zagier, D.: Newman’s short proof of the prime number theorem. Amer. Math. Monthly 104 (1997), 705–708. DOI 10.2307/2975232 | MR 1476753 | Zbl 0887.11039
Partner of
EuDML logo