[AG] Andres, J., Górniewicz, L.:
Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht 2003.
MR 1998968 |
Zbl 1029.55002
[AJP] Andres, J., Jüttner, L., Pastor, K.:
On a multivalued version of the Sharkovskii theorem and its application to differential inclusions II. Set-Valued Anal. (v tisku).
MR 2128697
[AP1] Andres, J., Pastor, K.:
On a multivalued version of the Sharkovskii theorem and its application to differential inclusions III. Topol. Meth. Nonlin. Anal. 22 (2003), 369–386.
MR 2036383 |
Zbl 1059.47057
[AP2] Andres, J., Pastor, K.:
A version of Sharkovskii’s theorem for differential equations. Proc. Amer. Math. Soc. (v tisku).
MR 2093067 |
Zbl 1063.34030
[BB] Barton, R., Burns, K.:
A simple special case of Sharkovskii’s theorem. Amer. Math. Monthly 107, 10 (2000), 932–933.
MR 1807003 |
Zbl 0979.37016
[BK] Bobok, J., Kuchta, M.:
X-minimal patterns and generalization of Sharkovskii’s theorem. Fund. Math. 156 (1998), 33–66.
MR 1610555
[F] Filippov, A. F.: Differenciaľnyje uravnenija s razryvnoj pravoj častju. Nauka, Moskva, 1985.
[G] Gleick, J.: Chaos. Ando Publ., Praha 1996.
[KH] Katok, A., Hasselblatt, B.:
Introduction to the Modern Theory Dynamical Systems. Cambridge Univ. Press, Cambridge 1995.
MR 1326374
[Kr] Krasnoseľskij, M. A.: Operator sdviga po trajektoriam differenciaľnych uravnenij. Nauka, Moskva 1966.
[KSS] Kannan, V., Saradhi, P. V. S. P., Seshasai, S. P.: A generalization of Sharkovskii theorem to higher dimensions. J. Nat. Acad. Math. India (Special volume to dedicate Prof. Dr. R. S. Mishra on the occasion of his 80th birthday), 11 (1995), 69–82.
[M2] Matsuoka, T.:
Braids of periodic points and a $2$-dimensional analogue of Sharkovskii’s ordering. In: Dynamical Systems and Nonlinear Oscillations (G. Ikegami, ed.), World Sci. Press, Singapore 1986, 58–72.
MR 0854304
[O] Orlicz, W.: Zur Theorie der Differentialgleichung ${y^{\prime }=f(x,y)}$. Bull. Akad. Polon. Sci., Sér. A, 00 (1932), 221–228.
[P] Pliss, V. A.:
Nelokaľnyje problemy teorii kolebanij. Nauka, Moskva 1964.
MR 0171962
[S] Schirmer, H.:
A topologist’s view of Sharkovsky’s theorem. Houston J. Math. 11, 3 (1985), 385–395.
MR 0808654 |
Zbl 0606.54031
[Š] Šarkovskij, A. N.: Sosuščestvovanije ciklov nepreryvnogo otobraženija v sebja. Ukrain. Matem. Žurn. 1 (1964), 61–71.
[Y] Ye, X.:
D-function of a minimal set and an extension of Sharkovskii’s theorem to minimal sets. Ergod. Th. Dynam. Sys. 12 (1992), 365–376.
MR 1176630 |
Zbl 0738.54019
[Z1] Zgliczynski, P.:
Sharkovskii theorem for multidimensional perturbations of oned̄imensional maps I, II. Ergod. Th. Dynam. Sys. 19, 6 (1999), 1655–1684; Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169–182.
DOI 10.1017/S0143385799141749