Previous |  Up |  Next

Article

Keywords:
Sharkovkii theorem; first order nonlinear differential equations
References:
[A1] Andres, J.: Nielsen number, Artin braids, Poincaré operators and multiple nonlinear oscillations. Nonlin. Anal. 47, 2 (2001), 1017–1028. DOI 10.1016/S0362-546X(01)00242-5 | MR 1970714 | Zbl 1042.37506
[A2] Andres, J.: Period three implications for expansive maps in ${\mathbb {R}}^n$. J. Difference Eqns 10, 1 (2004), 17–28. DOI 10.1080/1023619031000114314 | MR 2033331
[AFJ] Andres, J., Fišer, J., Jüttner, L.: On a multivalued version of the Sharkovskii theorem and its application to differential inclusions. Set-Valued Anal. 10, 1 (2002), 1–14. DOI 10.1023/A:1014488216807 | MR 1888453 | Zbl 1082.37048
[AG] Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht 2003. MR 1998968 | Zbl 1029.55002
[AJ] Andres, J., Jüttner, L.: Period three plays a negative role in a multivalued version of Sharkovskii’s theorem. Nonlin. Anal. 51 (2002), 1101–1104. DOI 10.1016/S0362-546X(01)00876-8 | MR 1926088 | Zbl 1015.37032
[AJP] Andres, J., Jüttner, L., Pastor, K.: On a multivalued version of the Sharkovskii theorem and its application to differential inclusions II. Set-Valued Anal. (v tisku). MR 2128697
[AP1] Andres, J., Pastor, K.: On a multivalued version of the Sharkovskii theorem and its application to differential inclusions III. Topol. Meth. Nonlin. Anal. 22 (2003), 369–386. MR 2036383 | Zbl 1059.47057
[AP2] Andres, J., Pastor, K.: A version of Sharkovskii’s theorem for differential equations. Proc. Amer. Math. Soc. (v tisku). MR 2093067 | Zbl 1063.34030
[B] Boyland, P.: An analog of Sharkovski’s theorem for twist maps. Contemp. Math., vol. 81, Amer. Math. Soc., Providence, R. I., 1988, 119–133. DOI 10.1090/conm/081/986261 | MR 0986261 | Zbl 0677.58039
[BB] Barton, R., Burns, K.: A simple special case of Sharkovskii’s theorem. Amer. Math. Monthly 107, 10 (2000), 932–933. MR 1807003 | Zbl 0979.37016
[BK] Bobok, J., Kuchta, M.: X-minimal patterns and generalization of Sharkovskii’s theorem. Fund. Math. 156 (1998), 33–66. MR 1610555
[F] Filippov, A. F.: Differenciaľnyje uravnenija s razryvnoj pravoj častju. Nauka, Moskva, 1985.
[G] Gleick, J.: Chaos. Ando Publ., Praha 1996.
[H] Handel, M.: The forcing partial order on three times punctured disk. Ergod. Th. Dynam. Sys. 17 (1997), 593–610. DOI 10.1017/S0143385797084940 | MR 1452182
[Ka] Kampen, J.: On fixed points of maps and iterated maps and applications. Nonlin. Anal. 42 (2000), 509–532. DOI 10.1016/S0362-546X(99)00111-X | MR 1775390 | Zbl 0967.37014
[KH] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory Dynamical Systems. Cambridge Univ. Press, Cambridge 1995. MR 1326374
[Kl] Kloeden, P. E.: On Sharkovsky’s cycle coexisting ordering. Bull. Austral. Math. Soc. 20 (1979), 171–177. DOI 10.1017/S0004972700010819 | MR 0557223
[Kr] Krasnoseľskij, M. A.: Operator sdviga po trajektoriam differenciaľnych uravnenij. Nauka, Moskva 1966.
[KSS] Kannan, V., Saradhi, P. V. S. P., Seshasai, S. P.: A generalization of Sharkovskii theorem to higher dimensions. J. Nat. Acad. Math. India (Special volume to dedicate Prof. Dr. R. S. Mishra on the occasion of his 80th birthday), 11 (1995), 69–82.
[LY] Li, T.-Y., Yorke, J.: Period three implies chaos. Amer. Math. Monthly 82 (1975), 985–992. DOI 10.2307/2318254 | MR 0385028 | Zbl 0351.92021
[M1] Matsuoka, T.: The number and linking of periodic systems. Invent. Math. 70 (1983), 319–340. DOI 10.1007/BF01391795 | MR 0683687
[M2] Matsuoka, T.: Braids of periodic points and a $2$-dimensional analogue of Sharkovskii’s ordering. In: Dynamical Systems and Nonlinear Oscillations (G. Ikegami, ed.), World Sci. Press, Singapore 1986, 58–72. MR 0854304
[O] Orlicz, W.: Zur Theorie der Differentialgleichung ${y^{\prime }=f(x,y)}$. Bull. Akad. Polon. Sci., Sér. A, 00 (1932), 221–228.
[P] Pliss, V. A.: Nelokaľnyje problemy teorii kolebanij. Nauka, Moskva 1964. MR 0171962
[R] Robinson, C.: Dynamical Systems. CRC Press, Boca Raton, Fl. 1995. MR 1396532 | Zbl 0853.58001
[S] Schirmer, H.: A topologist’s view of Sharkovsky’s theorem. Houston J. Math. 11, 3 (1985), 385–395. MR 0808654 | Zbl 0606.54031
[Š] Šarkovskij, A. N.: Sosuščestvovanije ciklov nepreryvnogo otobraženija v sebja. Ukrain. Matem. Žurn. 1 (1964), 61–71.
[Y] Ye, X.: D-function of a minimal set and an extension of Sharkovskii’s theorem to minimal sets. Ergod. Th. Dynam. Sys. 12 (1992), 365–376. MR 1176630 | Zbl 0738.54019
[Z1] Zgliczynski, P.: Sharkovskii theorem for multidimensional perturbations of oned̄imensional maps I, II. Ergod. Th. Dynam. Sys. 19, 6 (1999), 1655–1684; Topol. Meth. Nonlin. Anal. 14, 1 (1999), 169–182. DOI 10.1017/S0143385799141749
[Z2] Zgliczynski, P.: Multidimensional perturbations of one-dimensional maps and stability of Šarkovskii ordering. Internat. J. Bifurc. Chaos 9, 9 (1999), 1867–1876. DOI 10.1142/S0218127499001346 | MR 1728745 | Zbl 1089.37502
Partner of
EuDML logo