[3] Banachiewicz, T.: O związku pomiędzy pewnym twierdzeniem matematyków chińskich a formą Fermata na liczby pierwsze. Spraw. Tow. Nauk, Warszawa 2 (1909), 7–11.
[6] Carmichael, R. D.:
On composite numbers $P$ which satisfy the Fermat congruence ${a^{P-1}\equiv 1 (\operatorname{mod} P)}$. Amer. Math. Monthly 19 (1912), 22–27.
DOI 10.2307/2972687 |
MR 1517641
[7] Cipolla, M.:
Sui numeri composti P, che verificano la congruenza di Fermat ${a^{P-1}\equiv 1 (\operatorname{mod} P)}$. Annali di Matematica (3) 9 (1904), 139–160.
DOI 10.1007/BF02419871
[8] Dickson, L. E.: History of the theory of numbers, vol. I, Divisibility and primality. Carnegie Inst., Washington 1919.
[9] Duparc, H. J. A.:
On Carmichael numbers, Poulet numbers, Mersenne numbers and Fermat numbers. Rapport ZW 1953-004, Math. Centrum Amsterdam 1953, 1–7.
MR 0062143 |
Zbl 0053.02401
[11] Jarden, D.:
Existence of an infinitude of composite $n$ for which ${2^{n-1}\equiv 1 (\operatorname{mod} n)}$ (Hebrew, Engl. Summary). Riveon Lematematika 4 (1950), 65–67.
MR 0038995
[12] Jeans, J. H.: The converse of Fermat’s theorem. Messenger of Mathematics 27 (1897/98), 174.
[13] Joo, I., Phong, B. M.:
On super Lehmer pseudoprimes. Studia Sci. Math. Hungar. 25 (1990), 121–124.
MR 1102204
[15] Kiss, P.:
Some results on Lucas pseudoprimes. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 153–159.
MR 0856986
[16] Korselt, A.: Problème chinois. L’Interm. des Math. 6 (1899), 143.
[17] Křížek, M., Luca, F., Somer, L.:
17 lectures on Fermat numbers: From number theory to geometry. CMS Books in Mathematics, vol. 9, Springer-Verlag, New York 2001.
MR 1866957 |
Zbl 1010.11002
[19] Mahnke, D.: Leibniz auf der Suche nach einer allgemeinen Primzahlgleichung. Bibliotheca Math. 13 (1913), 29–61.
[20] Mąkowski, A.:
On a problem of Rotkiewicz on pseudoprime numbers. Elem. Math. 29 (1974), 13.
MR 0335424
[21] Malo, E.: Nombres qui sans être premiers, verifient exceptionnellement une congruence de Fermat. L’Interm. des Math. 10 (1903), 88.
[22] Phong, B. M.:
On super Lucas and super Lehmer pseudoprimes. Studia Sci. Math. Hungar. 23 (1988), 435–442.
MR 0982690 |
Zbl 0597.10004
[24] Pomerance, C.:
A new lower bound for the pseudoprime counting function. Illinois J. Math. 26 (1982), 4–9.
MR 0638549 |
Zbl 0474.10035
[26] Porubský, Š.: Fermat a teorie čísel aneb Problematika dělitelů a dokonalá čísla. In: Matematik Pierre de Fermat (eds. A. Šolcová et al.), Cahiers du CEFRES 28 (2002), 49–86.
[27] Poulet, P.:
Table des nombres composés vérifiant le théeorème de Fermat pour le module $2$ jusqu’à $100.000.000$. Sphinx 8 (1938), 42–52. Errata in Math. Comp. 25 (1971), 944–945, Math. Comp. 26 (1972), 814.
MR 0655816
[30] Rotkiewicz, A.:
Sur les nombres pseudopremiers de la forme ${ax+b}$. C. R. Acad. Sci. Paris Sér. I Math. 257 (1963), 2601–2604.
MR 0162757 |
Zbl 0116.03501
[31] Rotkiewicz, A.:
Sur les formules donnant des nombres pseudopremiers. Colloq. Math. 12 (1964), 69–72.
MR 0166138 |
Zbl 0129.02703
[32] Rotkiewicz, A.:
On the pseudoprimes of the form ${ax+b}$. Proc. Cambridge Philos. Soc. 63 (1967), 389–392.
MR 0209220 |
Zbl 0152.03102
[33] Rotkiewicz, A.:
Pseudoprime numbers and their generalizations. Stud. Assoc. Fac. Sci. Univ. Novi Sad 1972.
MR 0330034 |
Zbl 0324.10007
[34] Rotkiewicz, A.:
Lucas and Frobenius pseudoprimes. Proc. of the 10th Internat. Conf. on Fibonacci Numbers and their Applications, Flagstaff, Arizona, 2002 (to appear in Kluwer), 1–21.
MR 2076674
[35] Sierpiński, W.:
Remarque sur une hypothèse des Chinois concernant les nombres ${(2^n-2)/n}$. Colloq. Math. 1 (1948), 9.
MR 0023256
[36] Somer, L.:
On Fermat $d$-pseudoprimes. In: Théorie des nombres (éd. J.-M. De Koninck, C. Levesque), Walter de Gruyter, Berlin, New York, 1989, 841–860.
MR 1024609 |
Zbl 0687.10004
[37] Somer, L.:
On Lucas $d$-pseudoprimes. In: Applications of Fibonacci numbers, vol. 7 (eds. G. E. Bergum, A. N. Philippou, A. F. Horadam), Kluwer Academic Publishers, Dordrecht 1998, 369–375.
MR 1638463 |
Zbl 0919.11008
[38] Steuerwald, R.:
Über die Kongruenz ${2^{n-1}\equiv 1 (\operatorname{mod} n)}$. S.-B. Math.-Nat. Kl., Bayer. Akad. Wiss. 1947, 177.
MR 0030541