Previous |  Up |  Next

Article

Keywords:
Fermat theorem; prime; Carmichael number
References:
[1] Alford, W. R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers. Ann. of Math. 140 (1994), 703–722. DOI 10.2307/2118576 | MR 1283874 | Zbl 0816.11005
[2] Baillie, R., Wagstaff, S. S.: Lucas pseudoprimes. Math. Comp. 35 (1980), 1391–1417. DOI 10.1090/S0025-5718-1980-0583518-6 | MR 0583518 | Zbl 0458.10003
[3] Banachiewicz, T.: O związku pomiędzy pewnym twierdzeniem matematyków chińskich a formą Fermata na liczby pierwsze. Spraw. Tow. Nauk, Warszawa 2 (1909), 7–11.
[4] Beeger, N. G. W. H.: On even numbers $m$ dividing ${2^m-2}$. Amer. Math. Monthly 58 (1951), 553–555. DOI 10.2307/2306320 | MR 0043798
[5] Carmichael, R. D.: Note on a new number theory function. Bull. Amer. Math. Soc. 16 (1910), 232–238. DOI 10.1090/S0002-9904-1910-01892-9 | MR 1558896
[6] Carmichael, R. D.: On composite numbers $P$ which satisfy the Fermat congruence ${a^{P-1}\equiv 1 (\operatorname{mod} P)}$. Amer. Math. Monthly 19 (1912), 22–27. DOI 10.2307/2972687 | MR 1517641
[7] Cipolla, M.: Sui numeri composti P, che verificano la congruenza di Fermat ${a^{P-1}\equiv 1 (\operatorname{mod} P)}$. Annali di Matematica (3) 9 (1904), 139–160. DOI 10.1007/BF02419871
[8] Dickson, L. E.: History of the theory of numbers, vol. I, Divisibility and primality. Carnegie Inst., Washington 1919.
[9] Duparc, H. J. A.: On Carmichael numbers, Poulet numbers, Mersenne numbers and Fermat numbers. Rapport ZW 1953-004, Math. Centrum Amsterdam 1953, 1–7. MR 0062143 | Zbl 0053.02401
[10] Erdős, P.: On almost primes. Amer. Math. Monthly 57 (1950), 404–407. DOI 10.2307/2307640 | MR 0036259
[11] Jarden, D.: Existence of an infinitude of composite $n$ for which ${2^{n-1}\equiv 1 (\operatorname{mod} n)}$ (Hebrew, Engl. Summary). Riveon Lematematika 4 (1950), 65–67. MR 0038995
[12] Jeans, J. H.: The converse of Fermat’s theorem. Messenger of Mathematics 27 (1897/98), 174.
[13] Joo, I., Phong, B. M.: On super Lehmer pseudoprimes. Studia Sci. Math. Hungar. 25 (1990), 121–124. MR 1102204
[14] Kiss, E.: Notes on János Bolyai’s researches in number theory. Historia Math. 26 (1999), 68–76. DOI 10.1006/hmat.1998.2212 | MR 1677471 | Zbl 0920.11001
[15] Kiss, P.: Some results on Lucas pseudoprimes. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 153–159. MR 0856986
[16] Korselt, A.: Problème chinois. L’Interm. des Math. 6 (1899), 143.
[17] Křížek, M., Luca, F., Somer, L.: 17 lectures on Fermat numbers: From number theory to geometry. CMS Books in Mathematics, vol. 9, Springer-Verlag, New York 2001. MR 1866957 | Zbl 1010.11002
[18] Lehmer, D. H.: On the converse of Fermat’s theorem. Amer. Math. Monthly 43 (1936), 346–354. DOI 10.2307/2301798 | MR 1523680 | Zbl 0014.10204
[19] Mahnke, D.: Leibniz auf der Suche nach einer allgemeinen Primzahlgleichung. Bibliotheca Math. 13 (1913), 29–61.
[20] Mąkowski, A.: On a problem of Rotkiewicz on pseudoprime numbers. Elem. Math. 29 (1974), 13. MR 0335424
[21] Malo, E.: Nombres qui sans être premiers, verifient exceptionnellement une congruence de Fermat. L’Interm. des Math. 10 (1903), 88.
[22] Phong, B. M.: On super Lucas and super Lehmer pseudoprimes. Studia Sci. Math. Hungar. 23 (1988), 435–442. MR 0982690 | Zbl 0597.10004
[23] Pomerance, C.: On the distribution of pseudoprimes. Math. Comp. 37 (1981), 587–593. DOI 10.1090/S0025-5718-1981-0628717-0 | MR 0628717 | Zbl 0511.10002
[24] Pomerance, C.: A new lower bound for the pseudoprime counting function. Illinois J. Math. 26 (1982), 4–9. MR 0638549 | Zbl 0474.10035
[25] Pomerance, C., Selfridge, J. L., Wagstaff, S. S.: The pseudoprimes to ${25\cdot 10^9}$. Math. Comp. 35 (1980), 1003–1026. DOI 10.1090/S0025-5718-1980-0572872-7 | MR 0572872
[26] Porubský, Š.: Fermat a teorie čísel aneb Problematika dělitelů a dokonalá čísla. In: Matematik Pierre de Fermat (eds. A. Šolcová et al.), Cahiers du CEFRES 28 (2002), 49–86.
[27] Poulet, P.: Table des nombres composés vérifiant le théeorème de Fermat pour le module $2$ jusqu’à $100.000.000$. Sphinx 8 (1938), 42–52. Errata in Math. Comp. 25 (1971), 944–945, Math. Comp. 26 (1972), 814. MR 0655816
[28] Ribenboim, P.: The book of prime number records. Springer, New York 1988, 1989. MR 1016815 | Zbl 0642.10001
[29] Ribenboim, P.: The new book of prime number records. Springer, New York 1996. MR 1377060 | Zbl 0856.11001
[30] Rotkiewicz, A.: Sur les nombres pseudopremiers de la forme ${ax+b}$. C. R. Acad. Sci. Paris Sér. I Math. 257 (1963), 2601–2604. MR 0162757 | Zbl 0116.03501
[31] Rotkiewicz, A.: Sur les formules donnant des nombres pseudopremiers. Colloq. Math. 12 (1964), 69–72. MR 0166138 | Zbl 0129.02703
[32] Rotkiewicz, A.: On the pseudoprimes of the form ${ax+b}$. Proc. Cambridge Philos. Soc. 63 (1967), 389–392. MR 0209220 | Zbl 0152.03102
[33] Rotkiewicz, A.: Pseudoprime numbers and their generalizations. Stud. Assoc. Fac. Sci. Univ. Novi Sad 1972. MR 0330034 | Zbl 0324.10007
[34] Rotkiewicz, A.: Lucas and Frobenius pseudoprimes. Proc. of the 10th Internat. Conf. on Fibonacci Numbers and their Applications, Flagstaff, Arizona, 2002 (to appear in Kluwer), 1–21. MR 2076674
[35] Sierpiński, W.: Remarque sur une hypothèse des Chinois concernant les nombres ${(2^n-2)/n}$. Colloq. Math. 1 (1948), 9. MR 0023256
[36] Somer, L.: On Fermat $d$-pseudoprimes. In: Théorie des nombres (éd. J.-M. De Koninck, C. Levesque), Walter de Gruyter, Berlin, New York, 1989, 841–860. MR 1024609 | Zbl 0687.10004
[37] Somer, L.: On Lucas $d$-pseudoprimes. In: Applications of Fibonacci numbers, vol. 7 (eds. G. E. Bergum, A. N. Philippou, A. F. Horadam), Kluwer Academic Publishers, Dordrecht 1998, 369–375. MR 1638463 | Zbl 0919.11008
[38] Steuerwald, R.: Über die Kongruenz ${2^{n-1}\equiv 1 (\operatorname{mod} n)}$. S.-B. Math.-Nat. Kl., Bayer. Akad. Wiss. 1947, 177. MR 0030541
[39] Szymiczek, K.: Note on Fermat numbers. Elem. Math. 21 (1966), 59. MR 0193056 | Zbl 0142.28904
[40] Szymiczek, K.: On pseudoprimes which are products of distinct primes. Amer. Math. Monthly 74 (1967), 35–37. DOI 10.2307/2314051 | MR 0205921 | Zbl 0146.26803
Partner of
EuDML logo