Previous |  Up |  Next

Article

References:
[1] Albin, J. M. P.: On extremal theory for stationary processes. Ann. Probab. 18 (1990), 92–108. MR 1043939 | Zbl 0704.60029
[2] Alexandersson, H.: A homogeneity test applied to precipitation data. J. Climatol. 6 (1986), 661–675.
[3] Anděl, J.: Matematická statistika. SNTL/ALFA, Praha 1985.
[4] Antoch, J., Hušková, M., Jarušková, D.: Change-point problém po deseti letech. ROBUST ’1998. Antoch, J. a Dohnal, G. eds., JČMF, Praha 1998, 1–42.
[5] Antoch, J., Hušková, M., Jarušková, D.: Off-line process control. Multivariate Total Quality Control: Foundation and Recent Advances. Springer-Verlag, Heidelberg 2002, 1–86. MR 1886415
[6] Antoch, J., Hušková, M., Prášková, Z.: Effect of dependence on statistics for determination of change. J. Stat. Plan. Infer. 60 (1997), 291–310. MR 1456633
[7] Bai, J.: Least squares estimation of a shift in linear processes. J. Time Series Analysis 15 (1994), 453–472. MR 1292161 | Zbl 0808.62079
[8] Bhattacharya, P. K.: Weak convergence of the log-likelihood process in the two-phase regression problem. Proc. of the R. C. Bose Symposium on Probability, Statistics and Design of Experiments, Wiley Eastern, New Delhi 1990, 145–156.
[9] Brown, R. L., Durbin, J., Evans, J. M.: Techniques for testing the constancy of regression relationships over time (with discussion). JRSS B 37 (1975), 149–192. MR 0378310
[10] Buishand, T. A.: Tests for detecting a shift in the mean of hydrological records. J. Hydrol. 73 (1984), 51–69.
[11] Chernoff, H., Zacks, S.: Estimating the current mean of normal distribution which is subjected to changes in time. Ann. Math. Statist. 35 (1964), 999–1018. MR 0179874
[12] Csörgő, M., Horváth, L.: Limit Theorems in Change Point Analysis. J. Wiley, New York 1997.
[13] Deshayes, J., Picard, D.: Off-line statistical analysis of change point models using nonparametric and likelihood methods. Lecture Notes in Control and Information Sciences 77, Basseville, M. et al. eds., Springer Verlag, New York 1986, 103–168.
[14] Gardner, L. A.: On detecting changes in the mean of normal variates. Ann. Math. Statist. 40 (1969), 116–126. MR 0243666
[15] Hátle, J., Likeš, J.: Základy počtu pravděpodobnosti a matematické statistiky. SNTL/ALFA, Praha 1974.
[16] Hinkley, D. V.: Inference about the intersection in two-phase regression. Biometrika 56 (1969), 495–504. Zbl 0183.48505
[17] Chlebek, A., Jařabáč, M.: Vliv pokračujících těžeb porostů v povodí a obnovy na odtok vody. Zpráva pro závěrečné oponentní řízení, Výzkumný ústav lesního hospodářství a myslivosti, Jíloviště-Strnady 1989.
[18] James, B., James, K. L., Siegmund, D.: Tests for change points. Biometrika 74 (1987), 71–84. MR 0885920
[19] Jarušková, D.: Change-point detection for dependent data and application to hydrology. Istatistik. Journal of the Turkish Statistical Association 1 (1998), 9–21.
[20] Jarušková, D.: Change point detection in meteorological measurements. Monthly Weather Review 124 (1996), 1535–1543.
[21] Jarušková, D.: Some problems with application of change point detection methods to environmental data. Environmetrics 8 (1997), 469–483.
[22] Jones, P. D., Wigley, M. L., Briffa, K. R.: Global and hemispheric temperature anomalies — land and maritime instrumental records. Boden, T. A., Kaiser, D. P., Sepanski, R. J., Stoss, F. W., eds. Trends ’93: A Compendium of Data on Global Change, ORNC/CDIAC-65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA 1994, 603–608.
[23] Kander, Z., Zacks, S.: Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points. Ann. Math. Statist. 37 (1966), 1196–1210. MR 0202242
[24] MacNeill, I. B.: Tests for change of parameter at unknown time and distribution of some related functionals of Brownian motion. Ann. Statist. 2 (1974), 950–962. MR 0426253
[25] MacNeill, I. B.: Properties of sequences of partial sums of polynomial regression residuals with applications to tests for change of regression at unknown times. Ann. Statist. 6 (1978), 422–433. MR 0474645 | Zbl 0375.62064
[26] Rhoadas, D. A., Salinger, M. J.: Adjustment of temperature and rainfalls records for site changes. J. Climatol. 13 (1993), 899–913.
[27] Štěpán, J.: Teorie pravděpodobnosti. Matematické základy. Academia, Praha 1987.
[28] Vannitsem, S., Nicolis, C.: Detecting climatic transitions: Statistical and dynamical aspects. Beitr. Phys. Atmosph. 64 (1991), 245–254.
[29] Worsley, K. J.: Testing for a two-phase multiple regression. Technometrics 25 (1983), 35–42. MR 0694210 | Zbl 0508.62061
[30] Yao Yi-Ching, Davis, R. A.: The asymptotic behavior of the likelihood ratio statistic for testing a shift in mean in a sequence of independent normal variates. Sankhya 48 (1986), 339–353. MR 0905446 | Zbl 0691.62026
[31] Yao Yi-Ching, Au, S. T.: Least-squares estimation of a step function. Sankhya 51 (1989), 370–381. MR 1175613 | Zbl 0711.62031
Partner of
EuDML logo