Previous |  Up |  Next

Article

References:
[1] Arnol’d, V. I.: Geometrical methods in the theory of ordinary differential equations. ($2^{\rm nd}$ ed.). Springer-Verlag, New York 1988. Z ruštiny přeložil József M. Szücs. MR 0947141
[2] Barbour, J. M.: Music and ternary continued fractions. Amer. Math. Monthly 55 (1948), 545–555. MR 0027293
[3] Barbour, J. M.: Tuning and Temperament. Michigan State College Press, East Lansing 1953.
[4] Barbour, J. M.: A geometrical approximation to the roots of numbers. Amer. Math. Monthly 64 (1957), 1–9. MR 0086098 | Zbl 0078.13204
[5] Benson, D.: Mathematics and Music. V tisku, dosažitelné na ftp://byrd.math.uga.edu/pub/html/index.html (2000).
[6] Blackwood, E.: Microtonal Etudes. Cedille Records. CDR 90000 018.
[7] Boyce, W. E., DiPrima, R. C.: Elementary Differential Equations and Boundary Value Problems. ($4^{\rm nd}$ ed.). John Wiley & Sons, Inc., New York 1986. MR 0179403 | Zbl 0652.34001
[8] Brimi, H.: “Willow Dance, 1994,” in The Sweet Sunny North. Shanachie Records64057.
[9] Chapman, S. J.: Drums that sound the same. Amer. Math. Monthly 102 (1955), 124–138. MR 1315592
[10] Ctuistian, R. S., Davis, R. E., Tubis, A., Anderson, C. A., Mills, R. I., Rossing, T. D.: Effect of Air Loading on Timpani Membrane Vibrations. J. Acoust. Soc. Am. 76 (1984), 1336–1345.
[11] Devaney, R. L.: An introduction to chaotic dynamical systems. ($2^{\rm nd}$ ed.). AddisonW̄esley Publishing Company Advanced Book Program, Redwood City, CA 1989. MR 1046376 | Zbl 0695.58002
[12] Fletcher, N. H., Rossing, T. D.: The physics of musical instruments. ($2^{\rm nd}$ ed.). Springer-Verlag, New York 1998. MR 1675659 | Zbl 0898.00008
[13] Gordon, C., Webb, D. L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Amer. Math. Soc. 27 (1992), 134–138. MR 1136137 | Zbl 0756.58049
[14] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. ($5^{\rm nd}$ ed.). Oxford University Press, Oxford 1980.
[15] Helmholtz, H. v.: On thc sensations of tone as a physiological basis for the theory of music. Dover Publications, New York 1954. Originally published 1870, English translation by A. J. Ellis, 1875.
[16] Jorgensen, O.: Tuning. Michigan State University Press, East Lansing 1991.
[17] Kac, M.: Can one hear the shape of a drum?. Amer. Math. Monthly 73 (1966), 1–23. MR 0201237 | Zbl 0139.05603
[18] Kent, J. T.: Ternary continued fractions and the evenly-tempeted musical scale. CWI Newsletter 13 (1986), 21–33. MR 0898086
[19] Mersenne, M.: Harmonie universelle, contenant la théorie et la pratique de la musique. Centre national de la recherche stientifique, Paris, facsimile edition 1963. Původně vydáno v r. 1636.
[20] Pinsky, M. A.: Partial differential equations and boundary value problems with applications. (2$^{\rm nd}$ ed.). McGraw-Hill Inc., New York 1991. MR 1233559
[21] Rayleigh, J. W. S.: The theory of sound. ($2^{\rm nd}$ ed.). Dover Books, New York 1945. Původně vydáno v r. 1877. MR 0016009 | Zbl 0061.45904
[22] Rossing, T. D.: Acoustics of Percussion Instruments—part i. Phys. Teach. 14 (1976) 546–556.
[23] Rossing, T. D.: Acoustics of Percussion Instruments—part ii. Phys. Teach. 15 (1977), 278–288.
[24] Rossing, T. D.: The science of sound. ($2^{\rm nd}$ ed.) Addison-Wesley, New York 1990.
[25] Sethares, W. A.: Tuning, timbre, spectrum, scale. Springer-Verlag, New York 1999.
[26] Varberg, D. E.: Pick’s theorem revisited. Amer. Math. Monthly 92 (1985) 584–587. MR 0812105 | Zbl 0578.52012
Partner of
EuDML logo