[1] Agarwal, R. C., Burrus, C. S.:
Fast convolution using Fermat number transforms with applications to digital filtering. IEEE Trans. Acoust. Speech Signal Processing 22 (1974), 87–97.
MR 0398650
[2] Antonjuk, P. N., Stanjukovič, K. P.:
The logistic difference equation. Period doublings and Fermat numbers. (Russian). Dokl. Akad. Nauk SSSR 313 (1990), 1289–1292.
MR 1080023
[3] Biermann, K.-R.:
Thomas Clausen, Mathematiker und Astronom. J. Reine Angew. Math. 216 (1964), 159–198.
MR 0164862 |
Zbl 0127.00504
[4] Chang, C. C.:
An ordered minimal perfect hashing scheme based upon Euler’s theorem. Inform. Sci. 32 (1984), 165–172.
MR 0749147 |
Zbl 0567.68037
[5] Cooley, J. W., Tukey, J. W.:
An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19 (1965), 297–301.
MR 0178586 |
Zbl 0127.09002
[6] Crandall, R. E., Mayer, E., Papadopoulos, J.: The twenty-fourth Fermat number is composite. Math. Comp., submitted (1999), 1–21.
[7] Creutzburg, R., Grundmann, H.-J.:
Fast digital convolution via Fermat number transform. (German). Elektron. Informationsverarb. Kybernet. 21 (1985), 35–46.
MR 0805051
[8] Feigenbaum, M. J.:
Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19 (1978), 25–52.
MR 0501179 |
Zbl 0509.58037
[9] Hewgill, D.:
A relationship between Pascal’s triangle and Fermat’s numbers. Fibonacci Quart. 15 (1977), 183–184.
MR 0437343
[10] Gauss, C. F.: Disquisitiones arithmeticae. (přeloženo z latinského originálu z r. 1801). Springer, Berlin 1986.
[11] Jones, R., Pearce, J.:
A postmodern view of fractions and the reciprocals of Fermat primes. Math. Mag. 73 (2000), 83–97.
MR 1822751
[12] Křížek, M.:
O Fermatových číslech. PMFA 40 (1995), 243–253.
MR 1386144
[13] Křížek, M., Křížek, P.: Kouzelný dvanáctistěn pětiúhelníkový. Rozhledy mat.-fyz. 74 (1997), 234–238.
[14] Křížek, M., Luca, F., Somer, L.:
17 lectures on Fermat numbers: From number theory to geometry. Springer-Verlag, New York 2001.
MR 1866957
[15] Landry, F.: Sur la décomposition du nombre ${2^{64}+1}$. C. R. Acad. Sci. Paris 91 (1880), 138.
[16] Lucas, E.: Théorèmes d’arithmétique. Atti della Realle Accademia delle Scienze di Torino 13 (1878), 271–284.
[17] Pierpont, J.:
On an undemostrated theorem of the Disquisitiones Arithmeticæ. Bull. Amer. Math. Soc. 2 (1895/96), 77–83.
MR 1557414
[18] Reed, I. S., Truong, T. K., Welch, L. R.:
The fast decoding of Reed-Solomon codes using Fermat transforms. IEEE Trans. Inform. Theory 24 (1978), 497–499.
MR 0504337 |
Zbl 0385.94016
[19] Ripley, B. D.:
Stochastic simulations. John Wiley & Sons, New York 1987.
MR 0875224
[21] Schönhage, A., Strassen, V.: Fast multiplication of large numbers. (German). Computing 7 (1971), 281–292.
[22] Wantzel, P. L.: Recherches sur les moyens de reconnaître si un Problème de Géométrie peut se résoudre avec la règle at le compas. J. Math. 2 (1837), 366–372.