Previous |  Up |  Next

Article

References:
[Al] Alfsen, E. M.: Compact convex sets and boundary integrals. Springer-Verlag, Berlin 1971 (MR 56 #3615). MR 0445271 | Zbl 0209.42601
[Ar] Armitage, D. A.: The Riesz-Herglotz representation for positive harmonic functions via Choquet’s theorem. In: Potential Theory — ICPT 94, de Gruyter, Berlin 1996, 229–232 (MR 97f:31006). MR 1404709 | Zbl 0856.31003
[Ba1] Bauer, H.: Aproximace a abstraktní hranice. Pokroky mat. fyz. astronom. 26 (1981), 305–326 (MR 83d:41028). MR 0645302
[Ba2] Bauer, H.: Simplicial function spaces and simplexes. Expo. Math. 3 (1985), 165–168 (MR 87c:46009). MR 0816401 | Zbl 0564.46007
[Be] Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 51 (1928), 1–66.
[BlHa1] Bliedtner, J., Hansen, W.: Simplicial cones in potential theory. Inventiones Math. 29 (1975), 83–110 (MR 52 #8470). MR 0387630 | Zbl 0308.31011
[BlHa2] Bliedtner, J., Hansen, W.: The weak Dirichlet problem. J. Reine Angew. Math. 348 (1984), 34–39 (MR 85h:31012). MR 0733921 | Zbl 0536.31009
[BlHa3] Bliedtner, J., Hansen, W.: Potential theory — An analytic and probabilistic approach to balayage. Springer-Verlag, Berlin 1986 (MR 88b:31002). MR 0850715 | Zbl 0706.31001
[Bo] Bochner, S.: Harmonic analysis and the theory of probability. University of California Press, Berkeley and Los Angeles 1955 (MR 17 #273d). MR 0072370 | Zbl 0068.11702
[CaLi] Caffarelli, L. A., Littman, W.: Representation formulas for solutions to ${\Delta u-u=0}$ in ${\mathbb {R}}^n$. In: Studies in partial differential equations. MAA Stud. Math. 23, Math. Assoc. America, Washington, D. C. 1982, 249–263 (MR 84k:35045). MR 0716508
[Ed] Edgar, G. A.: Two integral representations. In: Measure theory and its applications (Sherbrooke, Que., 1982). Lecture Notes in Math. 1033, Springer-Verlag 1983, 193–198 (MR 85g:30034). MR 0729532
[EfKa] Effros, E. G., Kazdan, J. L.: Applications of Choquet simplexes to elliptic and parabolic boundary value problems. J. Diff. Eq. 8 (1970), 95–134 (MR 41 #4215). MR 0259577 | Zbl 0255.46018
[FoLiPh] Fonf, V. P., Lindenstrauss, J., Phelps, R. R.: Infinite dimensional convexity. Preprint (1999). MR 1863703
[Ha] Hansen, W.: A Liouville property for spherical averages in the plane. Preprint (1999). MR 1819883
[HaNa1] Hansen, W., Nadirashvili, N.: Littlewood’s one circle problem. J. London Math. Soc. (2) 50 (1994), 349–360 (MR 95j:31002). MR 1291742 | Zbl 0804.31001
[HaNa2] Hansen, W., Nadirashvili, N.: On Veech’s conjecture for harmonic functions. Ann. Scuola Norm. Sup. Pisa Cl.-Sci. (4), 22 (1995), 137–153 (MR 96c:31004). MR 1315353 | Zbl 0846.31003
[He] Helms, L. L.: Introduction to potential theory. Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience, New York – London – Sydney 1969 (MR 41 #5638). MR 0261018 | Zbl 0188.17203
[Ho] Holland, F.: The extreme points of a class of functions with positive real part. Math. Ann. 202 (1973), 85–87 (MR 49 #562). MR 0335782 | Zbl 0246.30027
[HuWh] Hunt, R. R., Wheeden, R. L.: Positive harmonic functions on Lipschitz domains. Trans. Amer. Math. Soc. 147 (1970), 505–527 (MR 43 #547). MR 0274787 | Zbl 0193.39601
[Cho] Choquet, G.: Lectures on analysis I–III. W. A. Benjamin, Inc., New York––Amsterdam 1969 (MR 40 #3254).
[Cho1] Choquet, G.: Deux exemples classiques de représentation intégrale. Enseignement Math.(2) 15 (1969), 63–75 (MR 40 #6224). MR 0253009 | Zbl 0175.42202
[Ja] Jacobs, K.: Extremalpunkte konvexer Mengen. In: Selecta Mathematica, III. Selecta Math., Heidelberger Taschenbücher 86 (1971), 90–118 (MR 58 #30754). MR 0641050 | Zbl 0219.46014
[Ke1] Keldyš, M. V.: On the solubility and stability of the Dirichlet problem (rusky). Uspechi Mat. Nauk. 8 (1941), 171–292 (MR 3 #123f). MR 0005249
[Ke2] Keldyš, M. V.: On the Dirichlet problem (rusky). Dokl. Akad. Nauk SSSR 32 (1941), 308–309 (MR 6 #64a).
[Kl] Klee, V.: Some new results on smoothness and rotundity in normed linear spaces. Math. Ann. 139 (1959), 51–63 (MR 22 #5879). MR 0115076 | Zbl 0092.11602
[Ko] Korányi, A.: A survey of harmonic functions on symmetric spaces. In: Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1. Amer. Math. Soc., Providence, R. I. 1979, 323–344 (MR 80k:43012).
[KNV] Král, J., Netuka, I., Veselý, J.: Teorie potenciálu IV. SPN, Praha 1977.
[Kr] Kružík, M.: Bauer’s maximum principle and hulls of sets. Preprint (2000). MR 1797873
[Li] Lindenstrauss, J.: Some useful facts about Banach spaces. In: Geometric aspects of functional analysis, Lecture Notes in Math. 1317, Springer-Verlag, Berlin 1988, 185–200 (MR 89g:46015). MR 0950980
[LM] Lukeš, J., Malý, J.: Measure and integral. Matfyzpress, Praha 1995.
[LMZ] Lukeš, J., Malý, J., Zajíček, L.: Fine topology methods in real analysis and potential theory. Lecture Notes in Math. 1189, Springer-Verlag, Berlin – New York 1986 (MR 89b:31001). MR 0861411
[Ma] Martin, R. S..: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 49 (1941), 137–172 (MR 2 #292h). MR 0003919 | Zbl 0025.33302
[Ne] Netuka, I.: The Dirichlet problem for harmonic functions. Amer. Math. Monthly 87 (1980), 621–628 (MR 82c:31005). MR 0600920 | Zbl 0454.31002
[NeVe1] Netuka, I., Veselý, J.: Dirichletova úloha a Keldyšova věta. Pokroky mat. fyz. astronom. 24 (1979), 77–88 (MR 82f:01126). MR 0543123
[NeVe2] Netuka, I., Veselý, J.: Mean value property and harmonic functions. In: Classical and modern potential theory and applications (Chateau de Bonas, 1993). Kluwer Acad. Publ., Dordrecht 1994, 359–398 (MR 96c:31001). MR 1321628
[Ph] Phelps, R. R.: Lectures on Choquet’s theorem. D. Van Nostrand Co., Inc., Princeton, N. J. – Toronto, Ont. – London 1966 (MR 33 #1690). MR 0193470 | Zbl 0135.36203
[Pr] Price, G. B.: On the extreme points of convex sets. Duke Math. J. 3 (1937), 56–67. MR 1545973 | Zbl 0016.22902
[Ra] Rakestraw, R. M.: A representation theorem for real convex functions. Pac. J. Math. 60 (1975), 165–168 (MR 52 #14193). MR 0393383 | Zbl 0266.26009
[Rob] Robertson, M. S.: On the coefficients of a typically-real functionas. Bul. Amer. Math. Soc. 41 (1935), 565–572. MR 1563142
[Rou] Roubíček, T.: Relaxation in optimization theory and variational calculus. de Gruyter Series in Nonlinear Analysis and Applications 4, de Gruyter, Berlin – New York 1997 (MR 98e:49002). MR 1458067
[Ve] Veech, W. A.: A converse to the mean value theorem for harmonic functions. Amer. J. Math. 97 (1975), 1007–1027 (MR 52 #14330). MR 0393521
Partner of
EuDML logo