Previous |  Up |  Next

Article

Keywords:
steady compressible Navier--Stokes--Fourier equations; slip boundary condition; weak solutions; large data
Summary:
We study steady flow of a compressible heat conducting viscous fluid in a bounded two-dimensional domain, described by the Navier-Stokes-Fourier system. We assume that the pressure is given by the constitutive equation $p(\rho, \theta) \sim \rho^\gamma + \rho \theta$, where $\rho$ is the density and $\theta$ is the temperature. For $\gamma > 2$, we prove existence of a weak solution to these equations without any assumption on the smallness of the data. The proof uses special approximation of the original problem, which guarantees the pointwise boundedness of the density. Thus we get a solution with density in $L^\infty (\Omega)$ and temperature and velocity in $W^{1,q} (\Omega)$ for any $q < \infty$.
References:
[1] Evans L.C.: Partial Differential Equations. Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, 1998. MR 1625845 | Zbl 1194.35001
[2] Frehse J., Steinhauer M., Weigant W.: The Dirichlet problem for steady viscous compressible flow in $3$-D. preprint, University of Bonn, SFB 611, No. 347 (2007), http://www.iam.uni-bonn.de/sfb611/
[3] Frehse J., Steinhauer M., Weigant W.: The Dirichlet problem for viscous compressible isothermal Navier–Stokes equations in two-dimensions. preprint, University of Bonn, SFB 611, No. 337 (2007), http://www.iam.uni-bonn.de/sfb611/ MR 2679367
[4] Lions P.L.: Mathematical Topics in Fluid Mechanics, Vol. 2: Compressible Models. Oxford Science Publications, Oxford University Press, New York, 1998. MR 1637634 | Zbl 0908.76004
[5] Mucha P.: On the inviscid limit on the Navier–Stokes equations for flows with large flux. Nonlinearity 16 (2003), no. 5, 1715–1732. DOI 10.1088/0951-7715/16/5/310 | MR 1999576
[6] Mucha P.B., Pokorný M.: On a new approach to the issue of existence and regularity for the steady compressible Navier–Stokes equations. Nonlinearity 19 (2006), no. 8, 1747–1768. DOI 10.1088/0951-7715/19/8/003 | MR 2250794
[7] Mucha P.B., Pokorný M.: On the steady compressible Navier–Stokes–Fourier system. Comm. Math. Phys. 288 (2009), no. 1, 349–377. DOI 10.1007/s00220-009-0772-x | MR 2491627
[8] Mucha P.B., Pokorný M.: Weak solutions to equations of steady compressible heat conducting fluids. Math. Models and Methods in Appl. Sc. 20 (2010) No. 5, 785–813. DOI 10.1142/S0218202510004441 | MR 2652619
[9] Novo S., Novotný A.: On the existence of weak solutions to the steady compressible Navier–Stokes equations when the density is not square integrable. J. Math. Kyoto Univ. 42, no. 3 (2002), 531–550. MR 1967222
[10] Novotný A., Straškraba I.: Introduction to The Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, Oxford, 2004. MR 2084891
[11] Pecharová P.: Steady compressible Navier–Stokes–Fourier equations in two space dimensions. Master Degree Thesis, MFF UK, Praha, 2009.
[12] Plotnikov P.I., Sokolowski J.: On compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier–Stokes equations. J. Math. Fluid Mech. 7 (2005), 529–573. DOI 10.1007/s00021-004-0134-6 | MR 2189674 | Zbl 1090.35140
[13] Pokorný M., Mucha P.B.: $3$D steady compressible Navier–Stokes equations. Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 1, 151–163. MR 2375591
Partner of
EuDML logo