Previous |  Up |  Next

Article

Title: The Kadison problem on a class of commutative Banach algebras with closed cone (English)
Author: Toumi, M. A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 51
Issue: 4
Year: 2010
Pages: 631-637
Summary lang: English
.
Category: math
.
Summary: The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra $A$ that all of its squares are positive and satisfying the following property: Every continuous bilinear map $\Phi $ from $A\times A$ into an arbitrary Banach space $B$ such that $\Phi(a,b)=0$ whenever $ab=0$, satisfies the condition $\Phi (ab,c)=\Phi(a,bc)$ for all $a,b,c\in A$. (English)
Keyword: derivation
Keyword: local derivation
MSC: 06F25
MSC: 13N05
MSC: 47B65
idZBL: Zbl 1224.06035
idMR: MR2858266
.
Date available: 2010-11-30T16:24:03Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/140843
.
Reference: [1] Alaminos J., Brešar M., Cerne M., Extremera J., Villena A.R.: Zero product preserving maps on $C^{1}[0,1]$.J. Math. Anal. Appl. 347 (2008), 472–481. MR 2440343, 10.1016/j.jmaa.2008.06.037
Reference: [2] Alaminos J., Brešar M., Extremera J., Villena A.R.: Maps preserving zero products.Studia Math. 193 (2009), 131–159. MR 2515516, 10.4064/sm193-2-3
Reference: [3] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, Orlando, 1985. Zbl 1098.47001, MR 0809372
Reference: [4] Buskes G., van Rooij A.: Almost $f$-algebras: commutativity and the Cauchy-Schwarz inequality.Positivity 4 (2000), 227–331. Zbl 0987.46002, MR 1797125, 10.1023/A:1009826510957
Reference: [5] Diem J.E.: A radical for lattice-ordered rings.Pacific J. Math. 25 (1968), 71–82. Zbl 0157.08004, MR 0227068, 10.2140/pjm.1968.25.71
Reference: [6] Kadison R.V.: Local derivations.J. Algebra 130 (1990), 494–509. Zbl 0751.46041, MR 1051316, 10.1016/0021-8693(90)90095-6
Reference: [7] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I.North-Holland, Amsterdam, 1971.
Reference: [8] De Pagter B.: f-algebras and orthomorphisms.Thesis, Leiden, 1981.
Reference: [9] Schaefer H.H.: Banach lattices and positive operators.Springer, New York, 1974. Zbl 0296.47023, MR 0423039
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_51-2010-4_8.pdf 202.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo