[1] Brézis H., Wainger S.:
A note on limiting case of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5 (1980), no. 7, 773–789.
DOI 10.1080/03605308008820154 |
MR 0579997
[6] Edmunds D.E., Gurka P., Opic B.:
Double exponential integrability, Bessel potentials and embedding theorems. Studia Math. 115 (1995), 151–181.
MR 1347439 |
Zbl 0829.47024
[7] Edmunds D.E., Gurka P., Opic B.:
Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995–1009.
MR 1415818 |
Zbl 0860.46024
[10] Hajlasz P., Koskela P.:
Sobolev met Poincaré. Memoirs of the Amer. Math. Soc 145 (2000), 101pp.
MR 1683160 |
Zbl 0954.46022
[11] Hansson K.:
Imbeddings theorems of Sobolev type in potential theory. Math. Scand. 49 (1979), 77–102.
MR 0567435
[18] Maz'ya V.: A theorem on multidimensional Schrödinger operator. (Russian), Izv. Akad. Nauk 28 (1964), 1145–1172.
[22] Pohozhaev S.I.: On the imbedding Sobolev theorem for $pl=n$. Doklady Conference, Section Math. Moscow Power Inst. (1965), 158–170.
[23] Rao M.M., Ren Z.D.:
Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991.
MR 1113700 |
Zbl 0724.46032
[25] Trudinger N.S.:
On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–484.
MR 0216286 |
Zbl 0163.36402
[26] Yudovič V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2 (1961), 746–749.