Previous |  Up |  Next

Article

Keywords:
Orlicz spaces; Sobolev inequalities
Summary:
We prove that the generalized Trudinger inequality for Orlicz-Sobolev spaces embedded into multiple exponential spaces implies a version of an inequality due to Brézis and Wainger.
References:
[1] Brézis H., Wainger S.: A note on limiting case of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5 (1980), no. 7, 773–789. DOI 10.1080/03605308008820154 | MR 0579997
[2] Černý R., Mašková S.: A sharp form of an embedding into multiple exponential spaces. Czechoslovak Math. J. 60 (2010), no. 3, 751–782. DOI 10.1007/s10587-010-0048-9 | MR 2672414
[3] Cianchi A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 (1996), 39–65. DOI 10.1512/iumj.1996.45.1958 | MR 1406683 | Zbl 0860.46022
[4] Cianchi A.: Optimal Orlicz-Sobolev embeddings. Rev. Mat. Iberoamericana 20 (2004), 427–474. DOI 10.4171/RMI/396 | MR 2073127 | Zbl 1061.46031
[5] Edmunds D.E., Gurka P., Opic B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19–43. DOI 10.1512/iumj.1995.44.1977 | MR 1336431 | Zbl 0826.47021
[6] Edmunds D.E., Gurka P., Opic B.: Double exponential integrability, Bessel potentials and embedding theorems. Studia Math. 115 (1995), 151–181. MR 1347439 | Zbl 0829.47024
[7] Edmunds D.E., Gurka P., Opic B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 995–1009. MR 1415818 | Zbl 0860.46024
[8] Edmunds D.E., Kerman R., Pick L.: Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal. 170 (2000), no. 2, 307–355. DOI 10.1006/jfan.1999.3508 | MR 1740655 | Zbl 0955.46019
[9] Fusco N., Lions P.L., Sbordone C.: Sobolev imbedding theorems in borderline cases. Proc. Amer. Math. Soc. 124 (1996), 561–565. DOI 10.1090/S0002-9939-96-03136-X | MR 1301025 | Zbl 0841.46023
[10] Hajlasz P., Koskela P.: Sobolev met Poincaré. Memoirs of the Amer. Math. Soc 145 (2000), 101pp. MR 1683160 | Zbl 0954.46022
[11] Hansson K.: Imbeddings theorems of Sobolev type in potential theory. Math. Scand. 49 (1979), 77–102. MR 0567435
[12] Hedberg L.I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (1972), 505–512. DOI 10.1090/S0002-9939-1972-0312232-4 | MR 0312232 | Zbl 0283.26003
[13] Hempel J.A., Morris G.R., Trudinger N.S.: On the sharpness of a limiting case of the Sobolev imbedding theorem. Bull. Austral. Math. Soc. 3 (1970), 369–373. DOI 10.1017/S0004972700046074 | MR 0280998 | Zbl 0205.12801
[14] Hencl S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 (2003), no. 1, 196–227. DOI 10.1016/S0022-1236(02)00172-6 | MR 2004749 | Zbl 1034.46031
[15] Hencl S.: Sharp generalized Trudinger inequalities via truncation. J. Math. Anal. Appl. 326 (2006), no. 1, 336–348. DOI 10.1016/j.jmaa.2005.07.041 | MR 2239242 | Zbl 1115.46026
[16] Koskela P., Onninen J.: Sharp inequalities via truncation. J. Math. Anal. Appl. 278 (2003), 324–334. DOI 10.1016/S0022-247X(02)00465-1 | MR 1974010 | Zbl 1019.26003
[17] Maz'ya V.: Sobolev Spaces. Springer, Berlin, 1975. MR 0817985 | Zbl 1152.46002
[18] Maz'ya V.: A theorem on multidimensional Schrödinger operator. (Russian), Izv. Akad. Nauk 28 (1964), 1145–1172.
[19] Malý J., Pick L.: An elementary proof of sharp Sobolev embeddings. Proc. Amer. Math. Soc. 130 (2002), no. 2, 555–563. DOI 10.1090/S0002-9939-01-06060-9 | MR 1862137
[20] O'Neil R.: Convolution operators and $L_{(p,q)}$ spaces. Duke Math. J. 30 (1963), 129–142. DOI 10.1215/S0012-7094-63-03015-1 | MR 0146673 | Zbl 0178.47701
[21] Peetre J.: Espaces d'interpolation et théorème de Soboleff. Ann. Inst. Fourier 16 (1966), 279–317. DOI 10.5802/aif.232 | MR 0221282 | Zbl 0151.17903
[22] Pohozhaev S.I.: On the imbedding Sobolev theorem for $pl=n$. Doklady Conference, Section Math. Moscow Power Inst. (1965), 158–170.
[23] Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York, 1991. MR 1113700 | Zbl 0724.46032
[24] Strichartz R.S.: A note on Trudinger's extension of Sobolev's inequality. Indiana Univ. Math. J. 21 (1972), 841–842. DOI 10.1512/iumj.1972.21.21066 | MR 0293389
[25] Trudinger N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–484. MR 0216286 | Zbl 0163.36402
[26] Yudovič V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2 (1961), 746–749.
Partner of
EuDML logo