Previous |  Up |  Next

Article

Keywords:
homogenization; uncertain input data; worst scenario
Summary:
We homogenize a class of nonlinear differential equations set in highly heterogeneous media. Contrary to the usual approach, the coefficients in the equation characterizing the material properties are supposed to be uncertain functions from a given set of admissible data. The problem with uncertainties is treated by means of the worst scenario method, when we look for a solution which is critical in some sense.
References:
[1] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[2] Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21 (1990), 823-836. DOI 10.1137/0521046 | MR 1052874 | Zbl 0698.76106
[3] Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978). MR 0503330 | Zbl 0404.35001
[4] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008), 1585-1620. DOI 10.1137/080713148 | MR 2466168 | Zbl 1167.49013
[5] Piat, V. Chiadò, Defranceschi, A.: Homogenization of monotone operators. Nonlin. Anal. 14 (1990), 717-732. DOI 10.1016/0362-546X(90)90102-M | MR 1049117
[6] Giorgi, E. De, Spagnolo, S.: Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. Unione Mat. Ital., IV. Ser. 8 (1973), 391-411 Italian. MR 0348255 | Zbl 0274.35002
[7] Hlaváček, I., Chleboun, J., Babuška, I.: Uncertain Input Data Problems and the Worst Scenario Method. Elsevier, Amsterdam (2004). MR 2285091 | Zbl 1116.74003
[8] Lukkassen, D., Meidell, A., Wall, P.: Multiscale homogenization of monotone operators. Discrete Contin. Dyn. Syst. 22 (2008), 711-727. DOI 10.3934/dcds.2008.22.711 | MR 2429861 | Zbl 1156.35314
[9] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86. MR 1912819 | Zbl 1061.35015
[10] Murat, F., Tartar, L.: H-convergence. Topics in Mathematical Modelling of Composite Materials Birkhäuser, Boston (1997), 21-43. MR 1493039 | Zbl 0920.35019
[11] Nechvátal, L.: Alternative approaches to the two-scale convergence. Appl. Math. 49 (2004), 97-110. DOI 10.1023/B:APOM.0000027218.04167.9b | MR 2043076 | Zbl 1099.35012
[12] Nechvátal, L.: Worst scenario method in homogenization. Appl. Math. 51 (2006), 263-294. DOI 10.1007/s10492-006-0015-9 | MR 2228666 | Zbl 1164.35317
[13] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[14] Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators. Springer, New York (1990). MR 1033498 | Zbl 0684.47029
Partner of
EuDML logo