Previous |  Up |  Next

Article

Keywords:
Laplacian eigenvalues; incidence energy; Kirchhoff index; Laplacian Estrada index
Summary:
For a bipartite graph $G$ and a non-zero real $\alpha $, we give bounds for the sum of the $\alpha $th powers of the Laplacian eigenvalues of $G$ using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.
References:
[1] Fath-Tabar, G. H., Ashrafi, A. R., Gutman, I.: Note on Estrada and $L$-Estrada indices of graphs. Bull. Cl. Sci. Math. Nat., Sci. Math. 34 (2009), 1-16. MR 2609605
[2] Fiedler, M.: Algebraic conectivity of graphs. Czechoslovak Math. J. 23 (1973), 298-305. MR 0318007
[3] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. MR 1275613 | Zbl 0802.05053
[4] Mohar, B.: The Laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications, Vol. 2 Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk Wiley New York (1991), 871-898. MR 1170831 | Zbl 0840.05059
[5] Gutman, I., Das, K. C.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. MR 2037426 | Zbl 1053.05115
[6] Gutman, I., Kiani, D., Mirzakhah, M., Zhou, B.: On incidence energy of a graph. Linear Algebra Appl. 431 (2009), 1223-1233. MR 2547906 | Zbl 1175.05084
[7] Gutman, I., Mohar, B.: The quasi-Wiener and the Kirchhoff indices coincide. J. Chem. Inf. Comput. Sci. 36 (1996), 982-985. DOI 10.1021/ci960007t
[8] Hong, Y., Zhang, X.-D.: Sharp upper and lower bounds for the largest eigenvalue of the Laplacian matrices of trees. Discrete Math. 296 (2005), 187-197. DOI 10.1016/j.disc.2005.04.001 | MR 2154712
[9] Jooyandeh, M. R., Kiani, D., Mirzakhah, M.: Incidence energy of a graph. MATCH Commun. Math. Comput. Chem. 62 (2009), 561-572. MR 2568740
[10] Klein, D. J., Randić, M.: Resistance distance. J. Math. Chem. 12 (1993), 81-95. DOI 10.1007/BF01164627 | MR 1219566
[11] Lazi'c, M.: On the Laplacian energy of a graph. Czechoslovak Math. J. 56 (2006), 1207-1213. DOI 10.1007/s10587-006-0089-2 | MR 2280804
[12] Nikiforov, V.: The energy of graphs and matrices. J. Math. Anal. Appl. 326 (2007), 1472-1475. DOI 10.1016/j.jmaa.2006.03.072 | MR 2280998 | Zbl 1113.15016
[13] Palacios, J.: Foster's formulas via probability and the Kirchhoff index. Methodol. Comput. Appl. Probab. 6 (2004), 381-387. DOI 10.1023/B:MCAP.0000045086.76839.54 | MR 2108558
[14] Tian, G., Huang, T., Zhou, B.: A note on sum of powers of the Laplacian eigenvalues of bipartite graphs. Linear Algebra Appl. 430 (2009), 2503-2510. MR 2508309 | Zbl 1165.05020
[15] Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH Weinheim (2000).
[16] Zhou, B.: On sum of powers of the Laplacian eigenvalues of graphs. Linear Algebra Appl. 429 (2008), 2239-2246. DOI 10.1016/j.laa.2008.06.023 | MR 2446656 | Zbl 1144.05325
[17] Zhou, B.: On sum of powers of Laplacian eigenvalues and Laplacian Estrada index of graphs. MATCH Commun. Math. Comput. Chem. 62 (2009), 611-619. MR 2568745
[18] Zhou, B.: More upper bounds for the incidence energy. MATCH Commun. Math. Comput. Chem. 64 (2010), 123-128. MR 2677573
[19] Zhou, B.: Signless Laplacian spectral radius and Hamiltonicity. Linear Algebra Appl. 432 (2010), 566-570. MR 2577702 | Zbl 1188.05086
[20] Zhou, B., Gutman, I.: More on the Laplacian Estrada index. Appl. Anal. Discrete Math. 3 (2009), 371-378. DOI 10.2298/AADM0902371Z | MR 2546897
[21] Zhou, B., Trinajstić, N.: A note on Kirchhoff index. Chem. Phys. Lett. 445 (2008), 120-123. DOI 10.1016/j.cplett.2008.02.060
[22] Zhou, B., Trinajstić, N.: On resistance-distance and Kirchhoff index. J. Math. Chem. 46 (2009), 283-289. DOI 10.1007/s10910-008-9459-3 | MR 2598494
[23] Zhou, B., Trinajstić, N.: Mathematical properties of molecular descriptors based on distances. Croat. Chem. Acta 83 (2010), 227-242.
Partner of
EuDML logo