Previous |  Up |  Next

Article

Keywords:
sequential analysis; discrete-time stochastic process; dependent observations; statistical decision problem; Bayes decision; randomized stopping time; optimal stopping rule; existence and uniqueness of optimal sequential decision procedure
Summary:
In this article, a general problem of sequential statistical inference for general discrete-time stochastic processes is considered. The problem is to minimize an average sample number given that Bayesian risk due to incorrect decision does not exceed some given bound. We characterize the form of optimal sequential stopping rules in this problem. In particular, we have a characterization of the form of optimal sequential decision procedures when the Bayesian risk includes both the loss due to incorrect decision and the cost of observations.
References:
[1] Berger, J. O.: Statistical Decision Theory and Sequential Analysis. Second edition. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo 1985. MR 0804611
[2] Berk, R. H.: Locally most powerful sequential tests. Ann. Statist. 3 (1975), 373–381. DOI 10.1214/aos/1176343063 | MR 0368346 | Zbl 0332.62063
[3] Castillo, E., García, J.: Necessary conditions for optimal truncated sequential tests. Simple hypotheses (in Spanish). Stochastica 7 (1983), 1, 63–81. MR 0766891
[4] Chow, Y. S., Robbins, H., Siegmund, D.: Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin Company, Boston 1971. MR 0331675 | Zbl 0233.60044
[5] Cochlar, J.: The optimum sequential test of a finite number of hypotheses for statistically dependent observations. Kybernetika 16 (1980), 36–47. MR 0575415 | Zbl 0434.62060
[6] Cochlar, J., Vrana, I.: On the optimum sequential test of two hypotheses for statistically dependent observations. Kybernetika 14 (1978), 57–69. MR 0488544 | Zbl 0376.62056
[7] DeGroot, M. H.: Optimal Statistical Decisions. McGraw-Hill Book Co., New York, London, Sydney 1970. MR 0356303 | Zbl 0225.62006
[8] Ferguson, T.: Mathematical Statistics: A Decision Theoretic Approach. Probability and Mathematical Statistics, Vol. 1. Academic Press, New York, London 1967. MR 0215390 | Zbl 0153.47602
[9] Ghosh, M., Mukhopadhyay, N., Sen, P. K.: Sequential Estimation. John Wiley & Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto 1997. MR 1434065 | Zbl 0953.62079
[10] Kiefer, J., Weiss, L.: Some properties of generalized sequential probability ratio tests. Ann. Math. Statist. 28 (1957), 57–75. DOI 10.1214/aoms/1177707037 | MR 0087290 | Zbl 0079.35406
[11] Lehmann, E. L.: Testing Statistical Hypotheses. John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London 1959. MR 0107933 | Zbl 0089.14102
[12] Lorden, G.: Structure of sequential tests minimizing an expected sample size. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 51 (1980), 291–302. MR 0566323 | Zbl 0407.62055
[13] Müller-Funk, U., Pukelsheim, F., Witting, H.: Locally most powerful tests for two-sided hypotheses. Probability and statistical decision theory, Vol. A (Bad Tatzmannsdorf 1983), pp. 31–56, Reidel, Dordrecht 1985. MR 0851017
[14] Novikov, A.: Optimal sequential multiple hypothesis testing in presence of control variables. Kybernetika 45 (2009), 3, 507–528. MR 2543137 | Zbl 1165.62053
[15] Novikov, A.: Optimal sequential multiple hypothesis tests. Kybernetika 45 (2009), 2, 309–330. MR 2518154 | Zbl 1167.62453
[16] Novikov, A.: Optimal sequential procedures with Bayes decision rules. Internat. Math. Forum 5 (2010), 43, 2137–2147. MR 2685120 | Zbl 1201.62095
[17] Novikov, A.: Optimal sequential tests for two simple hypotheses. Sequential Analysis 28 (2009), 2, 188–217. DOI 10.1080/07474940902816809 | MR 2518830 | Zbl 1162.62080
[18] Novikov, A., Novikov, P.: Locally most powerful sequential tests of a simple hypothesis vs. one-sided alternatives. Journal of Statistical Planning and Inference 140 (2010), 3, 750-765. DOI 10.1016/j.jspi.2009.09.004 | MR 2558402 | Zbl 1178.62087
[19] Schmitz, N.: Optimal Sequentially Planned Decision Procedures. Lecture Notes in Statistics 79 (1993), New York: Springer-Verlag. DOI 10.1007/978-1-4612-2736-6_4 | MR 1226454 | Zbl 0771.62057
[20] Shiryayev, A. N.: Optimal Stopping Rules. Springer-Verlag, Berlin, Heidelberg, New York 1978. MR 0468067 | Zbl 0391.60002
[21] Wald, A.: Statistical Decision Functions. John Wiley & Sons, Inc., New York, London, Sydney 1971. MR 0394957 | Zbl 0229.62001
[22] Wald, A., Wolfowitz, J.: Optimum character of the sequential probability ratio test. Ann. Math. Statist. 19 (1948), 326–339. DOI 10.1214/aoms/1177730197 | MR 0026779 | Zbl 0032.17302
[23] Weiss, L.: On sequential tests which minimize the maximum expected sample size. J. Amer. Statist. Assoc. 57 (1962), 551–566. DOI 10.1080/01621459.1962.10500543 | MR 0145630 | Zbl 0114.10304
[24] Zacks, S.: The Theory of Statistical Inference. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, London, Sydney 1971. MR 0420923
Partner of
EuDML logo