Previous |  Up |  Next

Article

Keywords:
hybrid algorithm; differential evolution(DE); chaotic pattern search; global optimization
Summary:
Differential evolution algorithm combined with chaotic pattern search(DE-CPS) for global optimization is introduced to improve the performance of simple DE algorithm. Pattern search algorithm using chaotic variables instead of random variables is used to accelerate the convergence of solving the objective value. Experiments on 6 benchmark problems, including morbid Rosenbrock function, show that the novel hybrid algorithm is effective for nonlinear optimization problems in high dimensional space. The comparisons with the standard particle swarm optimization (PSO), differential evolution (DE) and other hybrid algorithms verify DE-CPS algorithm has great superiority.
References:
[1] Audet, C., Dennis, J. E.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11 (2001), 3, 573–594. DOI 10.1137/S1052623499352024 | MR 1814033
[2] Cai, J. J., Ma, X. Q., Li, X.: Chaotic ant swarm optimization to economic dispatch. Electron. Power Systems Research 77 (2007), 10, 1373–1380. DOI 10.1016/j.epsr.2006.10.006
[3] Fan, H. Y., Lampinen, J.: A trigonometric mutation operation to differential evolution. J. Global Optim. 27 (2003), 1, 105–129. DOI 10.1023/A:1024653025686 | MR 1994565 | Zbl 1142.90509
[4] HART, W. E.: Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization. IEEE Trans. Evol. Comput. 5 (2001), 4, 388–397. DOI 10.1109/4235.942532
[5] He, Y. Y., Zhou, J. Z., Li, C. S.: A precise chaotic particle swarm optimization algorithm based on improved tent map. ICNC 7 (2008), 569–573.
[6] He, Y. Y., Zhou, J. Z., Xiang, X. Q.: Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling. Chaos Solitons Fractals 42 (2009), 5, 3169–3176. DOI 10.1016/j.chaos.2009.04.019 | Zbl 1198.90184
[7] He, Y. Y., Zhou, J. Z., Qin, H.: Flood disaster classification based on fuzzy clustering iterative model and modified differential evolution algorithm. FSKD 3 (2009), 85–89.
[8] Ji, M. J., Tang, H. W.: Application of chaos in simulated annealing. optimization. Chaos Solitons Fractals 21 (2004), 933–941. DOI 10.1016/j.chaos.2003.12.032 | Zbl 1045.37054
[9] Kaelo, P., Ali, M. M.: A numerical study of some modified differential evolution algorithms. European J. Oper. Res. 169 (2006), 1176–1184. DOI 10.1016/j.ejor.2004.08.047 | MR 2174012 | Zbl 1079.90106
[10] Kennedy, J., Eberhan, R. J.: Particle swarm optimization. In: IEEE Internat. Conf on Neural Networks 1995, Vol. 4, pp. 1942–1948.
[11] Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley 1995.
[12] Storn, R., Price, K.: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11 (1997), 341–359. DOI 10.1023/A:1008202821328 | MR 1479553 | Zbl 0888.90135
[13] Storn, R., Price, K.: Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. University of California, Berkeley 2006.
[14] Tavazoei, M. S., Haeri, M.: Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl. Math. Comput. 187 (2007), 1076–1085. DOI 10.1016/j.amc.2006.09.087 | MR 2323114 | Zbl 1114.65335
[15] Xiang, T., Liao, X. F., Wong, K. W.: An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl. Math. Comput. 190 (2007), 1637–1645. DOI 10.1016/j.amc.2007.02.103 | MR 2339755 | Zbl 1122.65363
[16] Yang, D. X., Li, G., Cheng, G. D.: On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34 (2007), 1366–1375. DOI 10.1016/j.chaos.2006.04.057
[17] Yuan, X. H., Yuan, Y. B., Zhang, Y. C.: A hybrid chaotic genetic algorithm for short-term hydro system scheduling. Math. Comput. Simul. 59 (2002), 4, 319–327. DOI 10.1016/S0378-4754(01)00363-9 | MR 1907567 | Zbl 1030.90040
[18] Yuan, X. F., Wang, Y. N., Wu, L. H.: Pattern search algorithm using chaos and its application. J. of Hunan University (Natural Sciences) 34 (2007), 9, 30-33. Zbl 1150.68455
[19] Zhang, L., Zhang, C. J.: Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers. Kybernetika 44 (2008), 1, 35–42. MR 2405053 | Zbl 1145.93361
[20] Zhu, Z. L., Li, S. P., Yu, H.: A new approach to generalized chaos synchronization based on the stability of the error System. Kybernetika 44 (2008), 4, 492–500. MR 2459067 | Zbl 1172.93015
Partner of
EuDML logo