[3] Bassi, F., Rebay, S.:
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131 (1997), 267–279.
DOI 10.1006/jcph.1996.5572 |
MR 1433934 |
Zbl 0871.76040
[4] Bassi, F., Rebay, S.:
A high order discontinuous Galerkin method for compressible turbulent flow. In: Discontinuous Galerkin Method: Theory, Computations and Applications (B. Cockburn, G. E. Karniadakis, and C. W. Shu, eds.), (Lecture Notes in Computat. Sci. Engrg. 11.) Springer-Verlag, Berlin 2000, pp. 113–123.
MR 1842164
[6] Ciarlet, P. G.:
The Finite Elements Method for Elliptic Problems. North-Holland, Amsterdam – New York – Oxford 1979.
MR 0520174
[7] Cockburn, B., Hou, S., Shu, C. W.:
TVB Runge–Kutta local projection discontinuous Galerkin finite element for conservation laws IV: The multi-dimensional case. Math. Comp. 54 (1990), 545–581.
MR 1010597
[9] Dolejší, V.:
On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations. Internat. J. Numer. Methods Fluids 45 (2004), 1083–1106.
DOI 10.1002/fld.730 |
MR 2072224
[10] Dolejší, V.:
Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 4 (2008), 2, 231–274.
MR 2440946
[11] Dolejší, V., Kůs, P.:
Adaptive backward difference formula – discontinuous Galerkin finite element method for the solution of conservation laws. Internat. J. Numer. Methods Engrg. 73 (2008), 12, 1739–1766.
DOI 10.1002/nme.2143 |
MR 2397970
[12] Dolejší, V.: Discontinuous Galerkin method for the numerical simulation of unsteady compressible flow. WSEAS Trans. on Systems 5 (2006), 5, 1083–1090.
[13] Dolejší, V., Feistauer, M.:
Semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow. J. Comput. Phys. 198 (2004), 2, 727–746.
DOI 10.1016/j.jcp.2004.01.023 |
MR 2062915
[15] Feistauer, M., Felcman, J., Straškraba, I.:
Mathematical and Computational Methods for Compressible Flow. Oxford University Press, Oxford 2003.
MR 2261900
[16] Feistauer, M., Kučera, V.:
On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224 (2007), 1, 208–221.
DOI 10.1016/j.jcp.2007.01.035 |
MR 2322268
[17] Feistauer, M., Kučera, V., Prokopová, J.:
Discontinuous Galerkin solution of compressible flow in time dependent domains. Math. Comput. Simulations 80 (2010), 8, 1612-1623.
DOI 10.1016/j.matcom.2009.01.020 |
MR 2647255
[18] Hairer, E., Norsett, S. P., Wanner, G.:
Solving ordinary differential equations I, Nonstiff problems. (Springer Series in Computational Mathematics No. 8.) Springer Verlag, Berlin 2000.
MR 1227985
[19] Hartmann, R., Houston, P.:
Symmetric interior penalty DG methods for the compressible Navier–Stokes equations I: Method formulation. Internat. J. Numer. Anal. Model. 1 (2006), 1–20.
MR 2208562 |
Zbl 1129.76030
[20] Klaij, C. M., Vegt, J. van der, Ven, H. V. der:
Pseudo-time stepping for space-time discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. J. Comput. Phys. 219 (2006), 2, 622–643.
DOI 10.1016/j.jcp.2006.04.003 |
MR 2274951
[21] Lörcher, F., Gassner, G., Munz, C. D.:
A discontinuous Galerkin scheme based on a spacetime expansion. I. Inviscid compressible flow in one space dimension. J. Sci. Comput. 32 (2007), 2, 175–199.
DOI 10.1007/s10915-007-9128-x |
MR 2320569
[22] Rivière, B., Wheeler, M. F., Girault, V.:
Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3 (1999), 3-4, 337–360.
MR 1750076
[23] Watkins, D. S.:
Fundamentals of Matrix Computations. (Pure and Applied Mathematics, Wiley-Interscience Series of Texts, Monographs, and Tracts.) John Wiley , New York 2002.
MR 1899577