[1] Azorero, J. P. García, Alonso, I. Peral:
Existence and nonuniqueness for the $p$-Laplacian: Nonlinear eigenvalues. Commun. Partial Differ. Equations 12 (1987), 1389-1430.
MR 0912211
[2] Baffico, L., Conca, C., Rajesh, M.:
Homogenization of a class of nonlinear eigenvalue problems. Proc. R. Soc. Edinb. 136A (2006), 7-22.
MR 2217505 |
Zbl 1105.35010
[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.:
Asymptotic Analysis for Periodic Structures. North-Holland Amsterdam (1978).
MR 0503330 |
Zbl 0404.35001
[4] Chiadò-Piat, V., Maso, G. Dal, Defranceschi, A.:
G-convergence of monotone operators. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123-160.
MR 1065871
[6] Maso, G. Dal:
An Introduction to $\Gamma$-convergence. Birkhäuser Boston (1992).
MR 1201152
[8] Champion, T., Pascale, L. de:
Asymptotic behaviour of nonlinear eigenvalue problems involving $p$-Laplacian type operators. Proc. R. Soc. Edinb. 37A (2007), 1179-1195.
MR 2376876 |
Zbl 1134.35013
[9] Dunford, N., Schwartz, J. T.:
Linear Operators. Part 1: General Theory. John Wiley & Sons New York (1957).
MR 1009162
[10] Pankov, Y. Efendiev A.:
Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2 (2004), 237-268.
DOI 10.1137/030600266 |
MR 2043587
[11] Lindqvist, P.:
On a nonlinear eigenvalue problem. Fall School in Analysis, Jyväskylä 1994, Finland. Report 68 Univ. Jyväskylä Jyväskylä (1995), 33-54.
MR 1351043
[15] Zhikov, V. V., Kozlov, S. M., Oleinik, O. A.:
Homogenization of Differential Operators and Integral Functionals. Springer Berlin (1994).
MR 1329546