Previous |  Up |  Next

Article

Keywords:
stochastic; homogenization; eigenvalue
Summary:
Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form $$ -\div \Bigl (a\Bigl (T_1\Bigl (\frac x{\varepsilon _1}\Bigr )\omega _1,T_2 \Bigl (\frac x{\varepsilon _2}\Bigr )\omega _2, \nabla u^\omega _{\varepsilon }\Bigr )\Bigr ) =\lambda _\varepsilon ^\omega \mathcal C(u^\omega _{\varepsilon }). $$ It is shown, under certain structure assumptions on the random map $a(\omega _1,\omega _2,\xi )$, that the sequence $\{\lambda _\varepsilon ^{\omega ,k},u^{\omega ,k}_\varepsilon \}$ of $k$th eigenpairs converges to the $k$th eigenpair $\{\lambda ^k,u^k\}$ of the homogenized eigenvalue problem $$ - {\rm div}( b(\nabla u) ) = \lambda {\overline {\mathcal C}}(u). $$ For the case of $p$-Laplacian type maps we characterize $b$ explicitly.
References:
[1] Azorero, J. P. García, Alonso, I. Peral: Existence and nonuniqueness for the $p$-Laplacian: Nonlinear eigenvalues. Commun. Partial Differ. Equations 12 (1987), 1389-1430. MR 0912211
[2] Baffico, L., Conca, C., Rajesh, M.: Homogenization of a class of nonlinear eigenvalue problems. Proc. R. Soc. Edinb. 136A (2006), 7-22. MR 2217505 | Zbl 1105.35010
[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland Amsterdam (1978). MR 0503330 | Zbl 0404.35001
[4] Chiadò-Piat, V., Maso, G. Dal, Defranceschi, A.: G-convergence of monotone operators. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123-160. MR 1065871
[5] Chiadò-Piat, V., Defranceschi, A.: Homogenization of monotone operators. Nonlinear Anal., Theory Methods Appl. 14 (1990), 717-732. DOI 10.1016/0362-546X(90)90102-M | MR 1049117
[6] Maso, G. Dal: An Introduction to $\Gamma$-convergence. Birkhäuser Boston (1992). MR 1201152
[7] Defranceschi, A.: G-convergence of cyclically monotone operators. Asymptotic Anal. 2 (1989), 21-37. DOI 10.3233/ASY-1989-2103 | MR 0991415 | Zbl 0681.47023
[8] Champion, T., Pascale, L. de: Asymptotic behaviour of nonlinear eigenvalue problems involving $p$-Laplacian type operators. Proc. R. Soc. Edinb. 37A (2007), 1179-1195. MR 2376876 | Zbl 1134.35013
[9] Dunford, N., Schwartz, J. T.: Linear Operators. Part 1: General Theory. John Wiley & Sons New York (1957). MR 1009162
[10] Pankov, Y. Efendiev A.: Numerical homogenization of nonlinear random parabolic operators. Multiscale Model. Simul. 2 (2004), 237-268. DOI 10.1137/030600266 | MR 2043587
[11] Lindqvist, P.: On a nonlinear eigenvalue problem. Fall School in Analysis, Jyväskylä 1994, Finland. Report 68 Univ. Jyväskylä Jyväskylä (1995), 33-54. MR 1351043
[12] Svanstedt, N.: G-convergence of parabolic operators. Nonlinear Anal., Theory Methods Appl. 36 (1999), 807-842. DOI 10.1016/S0362-546X(97)00532-4 | MR 1682689 | Zbl 0933.35020
[13] Svanstedt, N.: Multiscale stochastic homogenization of monotone operators. Netw. Heterog. Media 2 (2007), 181-192. DOI 10.3934/nhm.2007.2.181 | MR 2291817
[14] Svanstedt, N.: Multiscale stochastic homogenization of convection-diffusion equations. Appl. Math. 53 (2008), 143-155. DOI 10.1007/s10492-008-0017-x | MR 2399903
[15] Zhikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals. Springer Berlin (1994). MR 1329546
Partner of
EuDML logo