Previous |  Up |  Next

Article

Keywords:
uniqueness; positive solution; two-point boundary value problem; Emden-Fowler equation
Summary:
The two-point boundary value problem \[ u'' + h(x) u^p = 0, \quad a < x < b, \qquad u(a) = u(b) = 0 \] is considered, where $p>1$, $h \in C^1[0,1]$ and $h(x)>0$ for $a \le x \le b$. The existence of positive solutions is well-known. Several sufficient conditions have been obtained for the uniqueness of positive solutions. On the other hand, a non-uniqueness example was given by Moore and Nehari in 1959. In this paper, new uniqueness results are presented.
References:
[1] Coffman, C. V.: On the positive solutions of boundary-value problems for a class of nonlinear differential equations. J. Differ. Equations 3 (1967), 92-111. DOI 10.1016/0022-0396(67)90009-5 | MR 0204755
[2] Dalmasso, R.: Uniqueness of positive solutions of nonlinear second-order equations. Proc. Amer. Math. Soc. 123 (1995), 3417-3424 . DOI 10.1090/S0002-9939-1995-1301018-5 | MR 1301018 | Zbl 0857.34034
[3] Korman, P.: On the multiplicity of solutions of semilinear equations. Math. Nachr. 229 (2001), 119-127 . MR 1855158 | Zbl 0999.35028
[4] Kwong, M. K.: On the Kolodner-Coffman method for the uniqueness problem of Emden-Fowler BVP. Z. Angew. Math. Phys. 41 (1990), 79-104 . MR 1036511 | Zbl 0708.34026
[5] Kwong, M. K.: Uniqueness results for Emden-Fowler boundary value problems. Nonlinear Anal. 16 (1991) 435-454 . MR 1093379
[6] Moore, R., Nehari, Z.: Nonoscillation theorems for a class of nonlinear differential equations. Trans. Amer. Math. Soc. 93 (1959), 30-52 . MR 0111897
[7] Moroney, R. M.: Note on a theorem of Nehari. Proc. Amer. Math. Soc. 13 (1962) 407-410 . MR 0148983 | Zbl 0115.30601
[8] Naito, M., Naito, Y.: Solutions with prescribed numbers of zeros for nonlinear second order differential equations. Funkcial. Ekvac. 37 (1994) 505-520 . MR 1311557 | Zbl 0820.34019
[9] Naito, Y.: Uniqueness of positive solutions of quasilinear differential equations. Differ. Int. Equations 8 (1995), 1813-1822 . MR 1347982 | Zbl 0831.34028
[10] Ni, W.-M., Nussbaum, R. D.: Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$. Comm. Pure Appl. Math. 38 (1985), 67-108 . MR 0768105 | Zbl 0581.35021
[11] Tanaka, S.: On the uniqueness of solutions with prescribed numbers of zeros for a two-point boundary value problem. Differ. Int. Equations 20 (2007), 93-104. MR 2282828 | Zbl 1212.34040
[12] Tanaka, S.: An identity for a quasilinear ODE and its applications to the uniqueness of solutions of BVP. J. Math. Anal. Appl. 351 (2009), 206-217 . MR 2472934
[13] Walter, W.: Ordinary Differential Equations. Graduate Texts in Mathematics, 182, Springer, New York (1998) . MR 1629775 | Zbl 1069.34095
[14] Wang, H.: On the existence of positive solutions for semilinear elliptic equations in the annulus. J. Differ. Equations 109 (1994), 1-7 . MR 1272398 | Zbl 0798.34030
[15] Yanagida, E.: Sturmian theory for a class of nonlinear second-order differential equations. J. Math. Anal. Appl. 187 (1994), 650-662 . MR 1297048 | Zbl 0816.34026
Partner of
EuDML logo