Previous |  Up |  Next

Article

Title: Note on a discretization of a linear fractional differential equation (English)
Author: Čermák, Jan
Author: Kisela, Tomáš
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 135
Issue: 2
Year: 2010
Pages: 179-188
Summary lang: English
.
Category: math
.
Summary: The paper discusses basics of calculus of backward fractional differences and sums. We state their definitions, basic properties and consider a special two-term linear fractional difference equation. We construct a family of functions to obtain its solution. (English)
Keyword: fractional difference
Keyword: fractional sum
Keyword: discrete Mittag-Leffler function
MSC: 26A33
MSC: 39A12
idZBL: Zbl 1224.39003
idMR: MR2723085
DOI: 10.21136/MB.2010.140695
.
Date available: 2010-07-20T18:35:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140695
.
Reference: [1] Atici, F. M., Eloe, P. W.: A transform method in discrete fractional calculus.Int. J. Difference Equ. 2 (2007), 165-176. MR 2493595
Reference: [2] Atici, F. M., Eloe, P. W.: Initial value problems in discrete fractional calculus.Proc. Amer. Math. Soc. 137 (2009), 981-989. Zbl 1166.39005, MR 2457438, 10.1090/S0002-9939-08-09626-3
Reference: [3] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales.An Introduction with Applications, Birkhäuser, Boston, MA (2001). Zbl 0993.39010, MR 1843232
Reference: [4] Čermák, J., Nechvátal, L.: On $(q,h)$-analogue of fractional calculus.J. Nonlinear Math. Phys. 17 (2010), 1-18. Zbl 1189.26006, MR 2647460, 10.1142/S1402925110000593
Reference: [5] Gray, H. L., Zhang, N. F.: On a new definition of the fractional difference.Math. Comp. 50 (1988), 513-529. Zbl 0648.39002, MR 0929549, 10.1090/S0025-5718-1988-0929549-2
Reference: [6] Miller, K. S., Ross, B.: Fractional Difference Calculus.Proc. Int. Symp. Unival. Funct., Frac. Calc. Appl., Koriyama, Japan, May 1988, 139-152; Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989. Zbl 0693.39002, MR 1199147
Reference: [7] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.John Wiley & Sons, New York (1993). Zbl 0789.26002, MR 1219954
Reference: [8] Díaz, R., Teruel, C.: $q,k$-Generalized Gamma and Beta Functions.J. Nonlin. Math. Phys. 12 (2005), 118-134. Zbl 1075.33010, MR 2122869, 10.2991/jnmp.2005.12.1.10
Reference: [9] Díaz, J. B., Osler, T. J.: Differences of fractional order.Math. Comp. 28 (1974), 185-202. MR 0346352, 10.2307/2005825
Reference: [10] Podlubný, I.: Fractional Differential Equations.Academic Press, San Diego (1999). MR 1658022
.

Files

Files Size Format View
MathBohem_135-2010-2_8.pdf 234.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo