Previous |  Up |  Next

Article

Keywords:
congruences; arithmetic progression; bi-arithmetic progression
Summary:
Suppose $k+1$ runners having nonzero distinct constant speeds run laps on a unit-length circular track. The Lonely Runner Conjecture states that there is a time at which a given runner is at distance at least $1/(k+1)$ from all the others. The conjecture has been already settled up to seven ($k \leq 6$) runners while it is open for eight or more runners. In this paper the conjecture has been verified for four or more runners having some particular speeds using elementary tools.
References:
[1] Barajas, J., Serra, O.: Regular chromatic number and the lonely runner problem. Electron. Notes Discrete Math. 29 (2007), 479-483. DOI 10.1016/j.endm.2007.07.085 | MR 2398840 | Zbl 1215.05052
[2] Barajas, J., Serra, O.: The lonely runner with seven runners. Electron. J. Combin. 15 (2008), \# R 48. DOI 10.37236/772 | MR 2398840 | Zbl 1206.11030
[3] Betke, U., Wills, J. M.: Untere Schranken für zwei diophantische Approximations-Funktionen. Monatsh. Math. 76 (1972), 214-217. DOI 10.1007/BF01322924 | MR 0313194 | Zbl 0239.10016
[4] Bienia, W., Goddyn, L., Gvozdjak, P., Sebő, A., Tarsi, M.: Flows, view obstructions and the lonely runner. J. Combin. Theory Ser. B 72 (1998), 1-9. DOI 10.1006/jctb.1997.1770 | MR 1604673
[5] Bohman, T., Holzman, R., Kleitman, D.: Six lonely runners. Electron. J. Combin. 8 (2001), \# R 3. DOI 10.37236/1602 | MR 1853254 | Zbl 1011.11048
[6] Cusick, T. W.: View-obstruction problems in $n$-dimensional geometry. J. Combin. Theory Ser. A 16 (1974), 1-11. DOI 10.1016/0097-3165(74)90066-1 | MR 0332539 | Zbl 0273.10025
[7] Cusick, T. W., Pomerance, C.: View-obstruction problems III. J. Number Theory 19 (1984), 131-139. DOI 10.1016/0022-314X(84)90097-0 | MR 0762763 | Zbl 0563.10026
[8] Freiman, G. A.: Foundations of a structural theory of set addition. Transl. Math. Monogr. 37 (1973), American Mathematical Society, Providence, R.I MR 0360496 | Zbl 0271.10044
[9] Freiman, G. A.: Inverse problem of additive number theory IV. On addition of finite sets II. Ucen. Zap. Elabuz. Gos. Ped. Inst. 8 (1960), 72-116.
[10] Haralambis, N. M.: Sets of integers with missing differences. J. Combin. Theory Ser. A 23 (1977), 22-33. DOI 10.1016/0097-3165(77)90076-0 | MR 0453689 | Zbl 0359.10047
[11] Jin, R.: Freiman's inverse problem with small doubling property. Adv. Math. 216 (2007), 711-752. DOI 10.1016/j.aim.2007.06.002 | MR 2351375 | Zbl 1231.11012
[12] Pandey, R. K.: A note on the lonely runner conjecture. J. Integer Sequences 12 (2009), Article 09.4.6. MR 2511224 | Zbl 1233.11026
[13] Renault, J.: View-obstruction: a shorter proof for six lonely runners. Discrete Math. 287 (2004), 93-101. DOI 10.1016/j.disc.2004.06.008 | MR 2094060
[14] Wills, J. M.: Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen. Monatsh. Math. 71 (1967), 263-269. DOI 10.1007/BF01298332 | MR 0227112 | Zbl 0148.27505
Partner of
EuDML logo