Previous |  Up |  Next

Article

Keywords:
Volterra summation equations; second order difference equations
Summary:
The asymptotic and oscillatory behavior of solutions of Volterra summation equation and second order linear difference equation are studied.
References:
[1] Agarwal, A. P.: Difference Equations and Inequalities. Marcel Dekker, New York (1992). MR 1155840 | Zbl 0925.39001
[2] Agarwal, A. P., Wong, P. I. Y.: Advanced Topics in Difference Equations. Kluwer, Dordrecht (1997). Zbl 0878.39001
[3] Agarwal, A. P., Domoshnitsky, A.: Nonoscillation of the first order differential equations with unbounded memory for stabilization by control signal. Appl. Math. Comput. 173 (2006), 177-195. DOI 10.1016/j.amc.2005.02.062 | MR 2203380
[4] Domoshnitsky, A., Drakhlin, M., Stavroulakis, I. P.: Distribution of zeros of integrofunctional equations. Math. Comput. Modelling 42 (2005), 193-205. DOI 10.1016/j.mcm.2004.02.043 | MR 2162397
[5] Graef, J. R., Thandapani, E.: Oscillatory behavior of solutions of Volterra summation equations. Appl. Math. Lett. 12 (1999), 79-84. DOI 10.1016/S0893-9659(99)00105-6 | MR 1750064
[6] Morchało, J.: Asymptotic properties of solutions of discrete Volterra equations. Math. Slovaca 52 (2002), 47-56. MR 1901013
[7] Morchało, J., Szmanda, A.: Asymptotic properties of solutions of some Volterra difference equations and second-order difference equations. Nonlinear Anal. 63 (2005), 801-811. DOI 10.1016/j.na.2005.02.007 | MR 2643354 | Zbl 1224.39022
[8] Polniakowski, Z.: Polynomial Hausdorff transformations. Annales Polonici Mathematici 5 (1958), 1-24. DOI 10.4064/ap-5-1-1-24 | MR 0100742 | Zbl 0082.27401
[9] Thandapani, E., Lalli, B. S.: Asymptotic behavior and oscillations of difference equations of Volterra type. Appl. Math. Lett. 7 (1994), 89-93. DOI 10.1016/0893-9659(94)90060-4 | MR 1349901
[10] Thandapani, E., Ravi, K.: On the oscillation of Volterra summation equations. Math. Bohem. 126 (2001), 41-52. MR 1825856 | Zbl 0982.39005
Partner of
EuDML logo