Previous |  Up |  Next

Article

Keywords:
order weakly compact operator; order continuous norm; discrete vector lattice
Summary:
We establish some properties of the class of order weakly compact operators on Banach lattices. As consequences, we obtain some characterizations of Banach lattices with order continuous norms or whose topological duals have order continuous norms.
References:
[1] Aliprantis, C. D., Burkinshaw, O.: Locally Solid Riesz Spaces. Academic Press (1978). MR 0493242 | Zbl 0402.46005
[2] Aliprantis, C. D., Burkinshaw, O.: On weakly compact operators on Banach lattices. Proc. Amer. Math. Soc. 83 (1981), 573-578. DOI 10.1090/S0002-9939-1981-0627695-X | MR 0627695 | Zbl 0452.47038
[3] Aliprantis, C. D., Burkinshaw, O.: Dunford-Pettis operators on Banach lattices. Trans. Amer. Math. Soc. 274 (1982), 227-238. DOI 10.1090/S0002-9947-1982-0670929-1 | MR 0670929 | Zbl 0498.47013
[4] Dodds, P. G.: o-weakly compact mappings of Riesz spaces. Trans. Amer. Math. Soc. 214 (1975), 389-402. MR 0385629 | Zbl 0313.46011
[5] Groenewegen, G., van Rooij, A.: The modulus of a weakly compact operator. Math. Z. 195 (1987), 473-480. DOI 10.1007/BF01166700 | MR 0900341 | Zbl 0611.47032
[6] Meyer-Nieberg, P.: Banach Lattices. Universitext. Springer, Berlin (1991). MR 1128093 | Zbl 0743.46015
[7] Schaefer, H. H.: Banach Lattices and Positive Operators. Springer, Berlin (1974). MR 0423039 | Zbl 0296.47023
[8] Wickstead, A. W.: Extremal structure of cones of operators. Quart. J. Math. Oxford 32 (1981), 239-253. DOI 10.1093/qmath/32.2.239 | MR 0615198 | Zbl 0431.47024
[9] Zaanen, A. C.: Riesz Spaces II. North Holland Publishing Company (1983). MR 0704021 | Zbl 0519.46001
Partner of
EuDML logo