Previous |  Up |  Next

Article

Keywords:
composition operator; distribution function; Fredholm operator; Lorentz space; Lorentz sequence space; multiplication operator; non-increasing rearrangement
Summary:
Description of multiplication operators generated by a sequence and composition operators induced by a partition on Lorentz sequence spaces $l(p,q)$, $1<p \le \infty $, $1\le q \le \infty $ is presented.
References:
[1] Abrahamse, M. B.: Multiplication Operators. Lecture Notes in Math., Vol. 693, Springer 17-36 (1978). DOI 10.1007/BFb0064658 | MR 0526530 | Zbl 0411.47021
[2] Allen, G. D.: Duals of Lorentz spaces. Pacific J. Math. 77 287-291 (1978). DOI 10.2140/pjm.1978.77.287 | MR 0510924 | Zbl 0362.46012
[3] Arora, S. C., Gopal Datt, Satish Verma: Composition operators on Lorentz spaces. Bull. Austral. Math. Soc. 76 205-214 (2007). DOI 10.1017/S0004972700039599 | MR 2353207
[4] Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Math. Vol. 129, Academic Press Inc., New York (1988). MR 0928802 | Zbl 0647.46057
[5] Cui, Y., Hudzik, H., Romesh Kumar, Maligranda, L.: Composition operators in Orlicz spaces. J. Austral. Math. Soc. 76 189-206 (2004). DOI 10.1017/S1446788700008892 | MR 2041244
[6] Hudzik, H., Rajeev Kumar, Romesh Kumar: Matrix multiplication operators on Banach function spaces. Proc. Indian Acad. Sci. (Math. Sci.) 116 71-81 (2006). DOI 10.1007/BF02829740 | MR 2210306
[7] Hudzik, H., Kaminska, A., Mastylo, M.: On the dual of Orlicz-Lorentz space. Proc. Amer. Math. Soc. 130 1645-1654 (2003). DOI 10.1090/S0002-9939-02-05997-X | MR 1887011
[8] Hunt, R. A.: On $L(p, q)$ spaces. L'Enseignment Math. 12 249-276 (1966). MR 0223874 | Zbl 0181.40301
[9] Kaminska, A., Raynaud, Y.: Isomorphic $lp$-subspaces in Orlicz-Lorentz sequence spaces. Proc. Amer. Math. Soc. 134 2317-2327 (2006). DOI 10.1090/S0002-9939-06-08266-9 | MR 2213705
[10] Lorentz, G. G.: Some new functional spaces. Ann. Math. 51 37-55 (1950). DOI 10.2307/1969496 | MR 0033449 | Zbl 0035.35602
[11] Lorentz, G. G.: On the theory of spaces $\Lambda $. Pacific J. Math. 1 411-429 (1951). DOI 10.2140/pjm.1951.1.411 | MR 0044740 | Zbl 0043.11302
[12] Montgomery-Smith, S. J.: Orlicz-Lorentz Spaces, Proceedings of the Orlicz Memorial Conference. Oxford, Mississippi (1991).
[13] Nakai, E.: Pointwise multipliers on the Lorentz spaces. Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 45 1-7 (1996). MR 1448884
[14] Singh, R. K., Kumar, A.: Multiplication and composition operators with closed ranges. Bull. Aust. Math. Soc. 16 247-252 (1977). DOI 10.1017/S0004972700023261 | MR 0493495
[15] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces. North Holland Math. Stud. 179, Elsevier Science Publications Amsterdem (1993). MR 1246562 | Zbl 0788.47021
[16] Stein, Elias M., Guido Weiss: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Math. Series, Vol. 32, Princeton Univ. Press, Princeton N.J. (1971). MR 0304972
[17] Takagi, H.: Fredholm weighted composition operators. Integral Equations Oper. Theory 16 267-276 (1933). DOI 10.1007/BF01358956 | MR 1205002
Partner of
EuDML logo