Previous |  Up |  Next

Article

Keywords:
Orlicz spaces; Orlicz-Sobolev spaces; embedding theorems; sharp constants
Summary:
Let $\Omega $ be a bounded open set in $\mathbb R^n$, $n \geq 2$. In a well-known paper {\it Indiana Univ. Math. J.}, 20, 1077--1092 (1971) Moser found the smallest value of $K$ such that $$ \sup \bigg \{\int _{\Omega } \exp \Big (\Big (\frac {\left |f(x)\right |}K\Big )^{n/(n-1)}\Big )\colon f\in W^{1,n}_0(\Omega ),\|\nabla f\|_{L^n}\leq 1\bigg \}<\infty . $$ We extend this result to the situation in which the underlying space $L^n$ is replaced by the generalized Zygmund space $L^n\log ^{n-1}L \log ^{\alpha }\log L$ $(\alpha <n-1)$, the corresponding space of exponential growth then being given by a Young function which behaves like $\exp (\exp (t^{n/(n-1-\alpha )}))$ for large $t$. We also discuss the case of an embedding into triple and other multiple exponential cases.
References:
[1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Springer (1996). MR 1411441
[2] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 39-65 (1996). DOI 10.1512/iumj.1996.45.1958 | MR 1406683 | Zbl 0860.46022
[3] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 19-43 (1995). DOI 10.1512/iumj.1995.44.1977 | MR 1336431 | Zbl 0826.47021
[4] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems. Studia Math. 115 151-181 (1995). MR 1347439 | Zbl 0829.47024
[5] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Roy. Soc. Edinburgh 126A 995-1009 (1996). MR 1415818 | Zbl 0860.46024
[6] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Functional Analysis 146 116-150 (1997). DOI 10.1006/jfan.1996.3037 | MR 1446377 | Zbl 0934.46036
[7] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings in logarithmic Bessel-potential spaces. Proc. Amer. Math. Soc. 126 2417-2425 (1998). DOI 10.1090/S0002-9939-98-04327-5 | MR 1451796
[8] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 119-128 (1995). MR 1331250 | Zbl 0835.46027
[9] Fusco, N., Lions, P. L., Sbordone, C.: Sobolev imbedding theorems in borderline cases. Proc. Amer. Math. Soc. 124 561-565 (1996). DOI 10.1090/S0002-9939-96-03136-X | MR 1301025 | Zbl 0841.46023
[10] Hedberg, L. I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36 505-512 (1972). DOI 10.1090/S0002-9939-1972-0312232-4 | MR 0312232
[11] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 196-227 (2003). DOI 10.1016/S0022-1236(02)00172-6 | MR 2004749 | Zbl 1034.46031
[12] Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20 1077-1092 (1971). DOI 10.1512/iumj.1971.20.20101 | MR 0301504
[13] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces. Math. Ineq. Appl. 2 391-467 (July 1999). MR 1698383 | Zbl 0956.46020
[14] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure Appl. Math. (1991). MR 1113700 | Zbl 0724.46032
[15] Strichartz, R. S.: A note on Trudinger's extension of Sobolev's inequality. Indiana Univ. Math. J. 21 841-842 (1972). DOI 10.1512/iumj.1972.21.21066 | MR 0293389
[16] Talenti, G.: Inequalities in rearrangement invariant function spaces. Nonlinear Analysis, Function Spaces and Applications 5 177-230 (1994), Prometheus Publ. House Prague. MR 1322313 | Zbl 0872.46020
[17] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 473-484 (1967). MR 0216286 | Zbl 0163.36402
[18] Yudovich, V. I.: Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2 746-749 (1961). Zbl 0144.14501
Partner of
EuDML logo