[3] Cheridito, P., Nualart, D.:
Stochastic integral of divergence type with respect to fBm with Hurst parametr $H\in(0,\frac12)$. Ann. I. H. Poincaré Probab. Stat. 41 (2005), 1049-1081.
DOI 10.1016/j.anihpb.2004.09.004 |
MR 2172209
[4] Prato, G. Da, Zabczyk, J.:
Stochastic Equations in Infinite Dimensions. Cambdridge University Press, Cambridge (1992).
MR 1207136 |
Zbl 0761.60052
[6] Denis, L., Erraoni, M., Ouknine, Y.:
Existence and uniqueness for solutions of one dimensional SDE's driven by an additive fractional noise. Stoch. Stoch. Rep. 76 (2004), 409-427.
DOI 10.1080/10451120412331299336 |
MR 2096729
[7] Duncan, T. E., Maslowski, B., Pasik-Duncan, B.:
Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion. (to appear) in SIAM J. Math. Anal.
MR 2481295
[8] Duncan, T. E., Maslowski, B., Pasik-Duncan, B.:
Linear stochastic equations in a Hilbert space with a fractional Brownian motion, Control Theory Applications in Financial Engineering and Manufacturing, Chapter 11, 201-222. Springer-Verlag, New York (2006).
MR 2353483
[9] Fernique, X.:
Régularité des trajectoires des fonctions aléatoires gaussiennes. École d'Été de Probabilités de Saint-Flour IV--1974, LNM 480, Springer-Verlag, Berlin (1975), 1-96.
MR 0413238 |
Zbl 0331.60025
[10] Friedman, A.:
Stochastic Differential Equations and Applications, vol. I. AP, New York (1975).
MR 0494490
[11] Hu, Y.:
Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Amer. Math. Soc. 175 (2005).
MR 2130224 |
Zbl 1072.60044
[12] Hu, Y., Nualart, D.:
Differential equations driven by Hölder continuous functions of order greater than $1/2$. Stochastic analysis and applications, 399-413, Springer, Berlin (2007).
MR 2397797 |
Zbl 1144.34038
[13] Karatzas, I., Shreve, S. E.:
Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988).
MR 0917065 |
Zbl 0638.60065
[14] Kufner, A., John, O., Fučík, S.:
Function Spaces. Academia, Praha (1977).
MR 0482102
[19] Mémin, J., Mishura, Y., Valkeila, E.:
Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions. Stat. Prob. Lett. 51 (2001), 197-206.
DOI 10.1016/S0167-7152(00)00157-7 |
MR 1822771
[20] Mishura, Y., Nualart, D.:
Weak solutions for stochastic differential equations with additive fractional noise. Stat. Probab. Lett. 70 (2004), 253-261.
DOI 10.1016/j.spl.2004.10.011 |
MR 2125162
[22] Nualart, D., Rǎşcanu, A.:
Differential Equations driven by Fractional Brownian Motion. Collect. Math. 53 (2002), 55-81.
MR 1893308
[24] Nualart, D., Ouknine, Y.:
Stochastic differential equations with additive fractional noise and locally unbounded drift. Stochastic inequalities and applications, 353-365, Birkhäuser, Basel (2003).
MR 2073441 |
Zbl 1039.60061
[25] Nualart, D.:
Stochastic integration with respect to fractional Brownian motion and applications. Stochastic models (Mexico City, 2002), 3-39, Contemp. Math., 336, Amer. Math. Soc., Providence, RI (2003).
DOI 10.1090/conm/336/06025 |
MR 2037156 |
Zbl 1063.60080