Article
Keywords:
analogue of Wiener measure; Cameron-Martin translation theorem; conditional analytic Feynman $w_\varphi $-integral; conditional Wiener integral; Kac-Feynman formula; simple formula for conditional $w_\varphi $-integral
Summary:
Let $C[0,T]$ denote the space of real-valued continuous functions on the interval $[0,T]$ with an analogue $w_\varphi $ of Wiener measure and for a partition $ 0=t_0< t_1< \cdots < t_n <t_{n+1}= T$ of $[0, T]$, let $X_n\: C[0,T]\to \mathbb R^{n+1}$ and $X_{n+1} \: C [0, T]\to \mathbb R^{n+2}$ be given by $X_n(x) = ( x(t_0), x(t_1), \cdots , x(t_n))$ and $X_{n+1} (x) = ( x(t_0), x(t_1), \cdots , x(t_{n+1}))$, respectively. \endgraf In this paper, using a simple formula for the conditional $w_\varphi $-integral of functions on $C[0, T]$ with the conditioning function $X_{n+1}$, we derive a simple formula for the conditional $w_\varphi $-integral of the functions with the conditioning function $X_n$. As applications of the formula with the function $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions of the form $F_m(x) = \int _0^T (x(t))^m d t$ for $x\in C[0, T]$ and for any positive integer $m$. Moreover, with the conditioning $X_n$, we evaluate the conditional $w_\varphi $-integral of the functions in a Banach algebra $\mathcal S_{w_\varphi }$ which is an analogue of the Cameron and Storvick's Banach algebra $\mathcal S$. Finally, we derive the conditional analytic Feynman $w_\varphi $-integrals of the functions in $\mathcal S_{w_\varphi }$.
References:
[1] Ash, R. B.:
Real analysis and probability. Academic Press, New York-London (1972).
MR 0435320
[4] Chang, K. S., Chang, J. S.:
Evaluation of some conditional Wiener integrals. Bull. Korean Math. Soc. 21 (1984), 99-106.
MR 0768465 |
Zbl 0576.28023
[8] Laha, R. G., Rohatgi, V. K.:
Probability theory. John Wiley & Sons, New York-Chichester-Brisbane (1979).
MR 0534143 |
Zbl 0409.60001