Article
Keywords:
relative topological properties; pseudocompact spaces; compact space
Summary:
In this paper, we study some properties of relatively strong pseudocompactness and mainly show that if a Tychonoff space $X$ and a subspace $Y$ satisfy that $Y\subset \overline {{\rm Int} Y}$ and $Y$ is strongly pseudocompact and metacompact in $X$, then $Y$ is compact in $X$. We also give an example to demonstrate that the condition $Y\subset \overline {{\rm Int} Y}$ can not be omitted.
References:
[1] Arhangel'skii, A. V.:
From classic topological invariant to relative topological properties. Sci. Math. Japon. 55 (2001), 153-201.
MR 1885790
[2] Arhangel'skii, A. V.: Location type properties: relative strong pseudocompactness. Trudy Matem. Inst. RAN 193 (1992), 28-30.
[3] Arhangel'skii, A. V., Genedi, H. M. M.: Beginning of the theory of relative topological properties. General Topology: Space and Mapping MGU Moscow (1989), 3-48 Russian.
[4] Engelking, R.:
General Topology. Sigma Series in Pure Mathematics. Heldermann Berlin (1989).
MR 1039321
[5] Grabner, E. M., Grabnor, G. C., Miyazaki, K.:
On properties of relative metacompactness and paracompactness type. Topol. Proc. 25 (2000), 145-177.
MR 1925682
[6] Scott, B. M.:
Pseudocompact metacompact spaces are compact. Topology, Proc. Conf. 4 (1979), 577-587.
MR 0598295