[1] Bandyopadhyay, M., Bhattacharyya, R., Mukhopadhyay, B.:
Dynamics of an autotroph-herbivore ecosystem with nutrient recycling. Ecol. Model. 176 (2004), 201-209.
DOI 10.1016/j.ecolmodel.2003.10.030
[3] Benson, D. L., Sherratt, J. A., Maini, P. K.:
Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55 (1993), 365-384.
DOI 10.1007/BF02460888 |
Zbl 0758.92003
[7] Bischi, G. I.:
Effects of time lags on transient characteristics of a nutrient recycling model. Math. Biosci. 109 (1992), 151-175.
DOI 10.1016/0025-5564(92)90043-V
[8] Colinvaux, P.: Ecology II. John Wiley & Sons Chichester (1993).
[9] Crawley, M. J.: Herbivory. The dynamics of animal plant interaction. Studies in Ecology Vol. 10. University of California Press Berkley (1983).
[10] Angelis, D. I. De, Bartell, S. M., Brenkert, A. L.:
Effect of nutrient recycling and food chain length on the resilience. Amer. Naturalist 134 (1989), 778-805.
DOI 10.1086/285011
[11] Angelis, D. L. De: Dynamics of Nutrient Recycling and Food Webs. Chapman & Hall London (1992).
[14] Ghosh, D., Sarkar, A. K.:
Stability and oscillations in a resource-based model of two interacting species with nutrient cycling. Ecol. Model. 107 (1998), 25-33.
DOI 10.1016/S0304-3800(97)00203-2
[17] Hassard, B. D., Kazarinoff, N. D., Wan, Y.-H.:
Theory and Applications of Hopf Bifurcation. Cambridge University Press Cambridge (1981).
MR 0603442 |
Zbl 0474.34002
[18] Holling, C. S.:
The functional response population regulation. Mem. Entomol. Soc. Can. 45 (1965), 1-60.
DOI 10.4039/entm9745fv
[20] Kreysig, E.:
Introductory Functional Analysis with Applications. John Wiley & Sons New York (1978).
MR 0467220
[21] Ludwig, D., Jones, D. D., Holling, C. S.:
Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Econ. 47 (1978), 315-332.
DOI 10.2307/3939
[22] Maini, P. K., Benson, D. L., Sherratt, J. A.:
Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. Biol. 9 (1992), 197-213.
DOI 10.1093/imammb/9.3.197 |
MR 1202777 |
Zbl 0767.92004
[24] Mukopadhyay, B., Bhattacharyya, R.:
A delay-diffusion model of marine plankton ecosystem exhibiting cyclic nature of blooms. J. Biol. Phys. 31 (2005), 3-22.
DOI 10.1007/s10867-005-2306-x
[25] Mukopadhyay, B., Bhattacharyya, R.:
Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity. Ecol. Model. 198 (2006), 163-173.
DOI 10.1016/j.ecolmodel.2006.04.005
[26] Mukhopadhyay, B., Bhattacharyya, R.:
Modeling the role of diffusion coefficients on Turing instability in a reaction-diffusion prey-predator system. Bull. Math. Biol. 68 (2006), 293-313.
DOI 10.1007/s11538-005-9007-2 |
MR 2224770
[30] Powell, T., Richardson, P. J.:
Temporal variation, spatial heterogeneity and competition for resources in plankton systems: theoretical models. Am. Nat. 125 (1985), 431-463.
DOI 10.1086/284352
[33] Ruan, S.:
Oscillations in plankton models with nutrient recycling. J. Theor. Biol. 208 (2001), 15-26.
DOI 10.1006/jtbi.2000.2196
[34] Ruan, S., Wolkowicz, G.:
Uniform persistence in plankton models with delayed nutrient recycling. Can. Appl. Math. Q. 3 (1995), 219-235.
MR 1360033
[35] Sarkar, A. K., Mitra, D., Roy, S., Roy, A. B.:
Permanence and oscillatory co-existence of a detritus-based prey-predator model. Ecol. Model. 53 (1991), 147-156.
DOI 10.1016/0304-3800(91)90146-R
[36] Sarkar, A. K., Roy, A. B.:
Oscillatory behavior in a resource-based plant-herbivore model with random herbivore attack. Ecol. Model. 68 (1993), 213-226.
DOI 10.1016/0304-3800(93)90018-N
[41] Smith, O. L.: Food Webs. Chapman & Hall London (1982).
[42] Svirezhev, Y. M., Logofet, D. O.:
Stability of Biological Communities. Mir Moscow (1983).
MR 0723326
[43] Whittaker, R. H.: Communities and Ecosystems. Macmillan New York (1975).