[2] Armand, J. L.: Application of the Theory of Optimal Control of Distributed Parameter Systems of Structural Optimization. NASA (1972).
[3] Boccardo, L., Murat, F.:
Nouveaux résultats de convergence des problèmes unilateraux. Res. Notes Math. 60 (1982), 64-85 French.
MR 0652507
[5] Boccardo, L., Dolcetta, J. C.:
$G$-convergenza e problema di Dirichlet unilaterale. Boll. Unione Math. Ital., IV. Ser. 12 (1975), 115-123 Italian.
MR 0399988 |
Zbl 0337.35023
[7] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. North Holland Amsterdam-New York-Oxford (1978).
MR 0520174 |
Zbl 0383.65058
[8] Glowinski, R.:
Numerical Methods for Nonlinear Variational Problems. Springer New York (1984).
MR 0737005 |
Zbl 0536.65054
[9] Haslinger, J., Mäkinen, R. A. E.:
Introduction to Shape Optimization. Theory, Approximation and Computation Advance in Design and Control. SIAM Philadelphia (2003).
MR 1969772
[10] Hlaváček, I., Chleboun, J., Babuška, I.:
Uncertain Input Data Problems and the Worst Scenario Method. Elsevier Amsterdam (2004).
MR 2285091 |
Zbl 1116.74003
[11] Hlaváček, I., Lovíšek, J.:
Control in obstacle-pseudoplate problems with friction on the boundary. Optimal design and problems with uncertain data. Applicationes Mathematicae 28 (2001), 407-426 Control in obstacle-pseudoplate problems with friction on the boundary. Approximate optimal design and worst scenario problems. Applicationes Mathematicae 29 (2002), 75-95.
DOI 10.4064/am28-4-3 |
MR 1873903
[12] Kinderlehrer, D., Stampacchia, G.:
An Introduction to Variational Inequalities and Their Applications. Academic Press New York (1980).
MR 0567696 |
Zbl 0457.35001
[13] Křížek, M., Neittaanmäki, P.:
Finite Element Approximation of Variational Problems and Applications. Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1990).
MR 1066462
[16] Murat, F.: $H$-convergence. Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger. Lecture Notes (1977-1978).
[17] Nečas, J.:
Les Méthodes Directes en Théorie des Équations Elliptiques. Academia Prague (1967), French.
MR 0227584
[19] Raitum, U. E.:
Sufficient conditions for sets of solutions of linear elliptic equations to be weakly sequentially closed. Latvian Math. J. 24 (1980), 142-155.
MR 0616251
[20] Rodrigues, J.-F.:
Obstacle Problems in Mathematical Physics. North Holland Amsterdam (1987).
MR 0880369 |
Zbl 0606.73017
[21] Shillor, M., Sofonea, M., Telega, J. J.:
Models and Analysis of Quasistatic Contact. Variational Methods. Springer Berlin (2004).
Zbl 1069.74001
[22] Sokolowski, J.:
Optimal control in coefficients of boundary value problems with unilateral constraints. Bull. Pol. Acad. Sci., Tech. Sci. 31 (1983), 71-81.
Zbl 0544.49005
[23] Spagnolo, S.:
Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Super. Pisa Sci. Fis. Mat., III. Ser. 22 (1968), 571-597 Italian.
MR 0240443
[24] Zhikov, V. V., Kozlov, S. M., Oleinik, O. A.:
Homogenization of Differential Operators and Integral Functionals. Springer Berlin (1994).
MR 1329546