[1] Antczak, T.:
An $\eta $-approximation approach to nonlinear mathematical programming problems involving invex functions. Numer. Funct. Anal. Optimization 25 (2004), 423-438.
DOI 10.1081/NFA-200042183 |
MR 2106268
[2] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.:
Nonlinear Programming. Theory and Algorithms. John Wiley & Sons New York (1993).
MR 2218478 |
Zbl 0774.90075
[3] Bector, C. R., Bector, B. K.: (Generalized)-bonvex functions and second order duality for a nonlinear programming problem. Congr. Numerantium 52 (1985), 37-52.
[4] Bector, C. R., Bector, M. K.:
On various duality theorems for second order duality in nonlinear programming. Cah. Cent. Etud. Rech. Opér. 28 (1986), 283-292.
MR 0885768 |
Zbl 0622.90068
[5] Bector, C. R., Chandra, S.: Generalized bonvex functions and second order duality in mathematical programming. Res. Rep. 85-2 Department of Actuarial and Management Sciences, University of Manitoba Winnipeg (1985).
[6] Bector, C. R., Chandra, S.:
(Generalized) bonvexity and higher order duality for fractional programming. Opsearch 24 (1987), 143-154.
MR 0918321 |
Zbl 0638.90095