[2] H. Beirão da Veiga:
A new regularity class for the Navier-Stokes equations in $\Bbb R^n$. Chin. Ann. Math., Ser. B 16 (1995), 407-412.
MR 1380578
[3] Dongho Chae, Hi-Jun Choe:
Regularity of solutions to the Navier-Stokes equation. Electron. J. Differ. Equ. No. 05 (1999).
MR 1673067
[5] Fabes, E. B., Jones, B. F., Rivière, N. M.:
The initial value problem for the Navier-Stokes equations with data in $L^p$. Arch. Ration. Mech. Anal. 45 (1972), 222-240.
DOI 10.1007/BF00281533 |
MR 0316915
[6] He, C.:
Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electron. J. Differ. Equ. No. 29 (2002).
MR 1907705 |
Zbl 0993.35072
[8] Iskauriaza, L., Serëgin, G. A., Shverak, V.:
$L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness. Usp. Mat. Nauk 58 (2003), 3-44 Russian.
MR 1992563
[12] Serrin, J.:
The initial value problem for the Navier-Stokes equations. Nonlinear Probl., Proc. Sympos. Madison 1962 R. Langer Univ. Wisconsin Press Madison (1963), 69-98.
MR 0150444 |
Zbl 0115.08502
[14] Zhou, Y.:
A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9 (2002), 563-578.
MR 2006605 |
Zbl 1166.35359