Previous |  Up |  Next

Article

Keywords:
density estimation; irregularities; jumps; local linear fitting; mean; peaks; preservation; smoothing; variance
Summary:
For nonparametric estimation of a smooth regression function, local linear fitting is a widely-used method. The goal of this paper is to briefly review how to use this method when the unknown curve possibly has some irregularities, such as jumps or peaks, at unknown locations. It is then explained how the same basic method can be used when estimating unsmooth probability densities and conditional variance functions.
References:
[1] Anscombe, F. J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35 (1948), 246-254. DOI 10.1093/biomet/35.3-4.246 | MR 0028556 | Zbl 0032.03702
[2] Antoch, J., Grégoire, G., Hušková, M.: Tests for continuity of regression function. J. Stat. Plann. Inference 137 (2007), 753-777. DOI 10.1016/j.jspi.2006.06.007 | MR 2301714
[3] Casas, I., Gijbels, I.: Estimation of smooth and non-smooth variance functions. Manuscript (2007).
[4] Desmet, L., Gijbels, I.: Peak preserving regression using local linear fitting. (2007), Submitted (2007).
[5] Fan, J., Gijbels, I.: Local Polynomial Modelling and its Applications. Chapman & Hall London (1996). MR 1383587 | Zbl 0873.62037
[6] Fan, J., Yao, Q.: Efficient estimation of conditional variance functions in stochastic regression. Biometrika 85 (1998), 645-660. DOI 10.1093/biomet/85.3.645 | MR 1665822 | Zbl 0918.62065
[7] Gao, J., Gijbels, I., Bellegem, S. Van: Nonparametric simultaneous testing for structural breaks. J. Econom. Special Issue on Specification Testing 143 (2008), 123-142. MR 2384436
[8] Gasser, T., Sroka, L., Jennen-Steinmetz, C.: Residual variance and residual pattern in nonlinear regression. Biometrika 73 (1986), 625-633. DOI 10.1093/biomet/73.3.625 | MR 0897854 | Zbl 0649.62035
[9] Gijbels, I., Goderniaux, A.-C.: Bandwidth selection for change point estimation in nonparametric regression. Technometrics 46 (2004), 76-86. DOI 10.1198/004017004000000130 | MR 2043389
[10] Gijbels, I., Goderniaux, A.-C.: Bootstrap test for change-points in nonparametric regression. J. Nonparametric Stat. 16 (2004), 591-611. DOI 10.1080/10485250310001626088 | MR 2073043 | Zbl 1148.62304
[11] Gijbels, I., Lambert, A., Qiu, P.: Edge-preserving image denoising and estimation of discontinuous surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006), 1075-1087. DOI 10.1109/TPAMI.2006.140
[12] Gijbels, I., Lambert, A., Qiu, P.: Jump-preserving regression and smoothing using local linear fitting: A compromise. Ann. Inst. Stat. Math. 59 (2007), 235-272. DOI 10.1007/s10463-006-0045-9 | MR 2394168
[13] Grégoire, G., Hamrouni, Z.: Change-point estimation by local linear smoothing. J. Multivariate Anal. 83 (2002), 56-83. DOI 10.1006/jmva.2001.2038 | MR 1934975 | Zbl 1021.62026
[14] Hall, P., Kay, J. W., Titterington, D. M.: Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 (1990), 521-528. DOI 10.1093/biomet/77.3.521 | MR 1087842
[15] Hall, P., Titterington, D. M.: Edge preserving and peak-preserving smoothing. Technometrics 34 (1992), 429-440. DOI 10.1080/00401706.1992.10484954 | MR 1190262
[16] Hamrouni, Z.: Inférence statistique par lissage linéaire local pour une fonction de régression présentant des discontinuités. Doctoral Dissertation Université de Joseph Fourier Grenoble (1999).
[17] Jones, M. C., Foster, P.: A simple nonnegative boundary correction method for kernel density estimation. Stat. Sin. 6 (1996), 1005-1013. MR 1422417 | Zbl 0859.62037
[18] Lambert, A.: Nonparametric estimation of discontinuous curves and surfaces. PhD. Dissertation Université catholique de Louvain Louvain-la-Neuve (2005).
[19] Marron, J. S., Ruppert, D.: Transformations to reduce boundary bias in kernel density estimation. J. R. Stat. Soc., Ser. B 56 (1994), 653-671. MR 1293239 | Zbl 0805.62046
[20] McDonald, J. A., Owen, A. B.: Smoothing with split linear fits. Technometrics 28 (1986), 195-208. DOI 10.1080/00401706.1986.10488127 | MR 0853113 | Zbl 0626.65010
[21] Müller, H.-G., Stadtmüller, U.: On variance function estimation with quadratic forms. J. Stat. Plann. Inference 35 (1993), 213-231. DOI 10.1016/0378-3758(93)90046-9 | MR 1220417
[22] Nadaraya, E. A.: On estimating regression. Theory Probab. Appl. 9 (1964), 141-142. Zbl 0136.40902
[23] Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962), 1065-1076. DOI 10.1214/aoms/1177704472 | MR 0143282 | Zbl 0116.11302
[24] Qiu, P.: A jump-preserving curve fitting procedure based on local piecewise-linear kernel estimation. J. Nonparametric Stat. 15 (2003), 437-453. DOI 10.1080/10485250310001595083 | MR 2017479 | Zbl 1054.62047
[25] Qiu, P.: Image Processing and Jump Regression Analysis. J. Wiley & Sons Hoboken (2005). MR 2111430 | Zbl 1070.68146
[26] Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Inst. Math. Stat. 27 (1956), 832-837. DOI 10.1214/aoms/1177728190 | MR 0079873 | Zbl 0073.14602
[27] Ruppert, D., Wand, M. P.: Multivariate locally weighted least squares regression. Ann. Stat. 22 (1994), 1346-1370. DOI 10.1214/aos/1176325632 | MR 1311979 | Zbl 0821.62020
[28] Ruppert, D., Wand, M. P., Holst, U., Hössjer, O.: Local polynomial variance-function estimation. Technometrics 39 (1997), 262-273. DOI 10.1080/00401706.1997.10485117 | MR 1462587
[29] Schuster, E. F.: Incorporating support constraints into nonparametric estimators of densities. Commun. Stat., Theory Methods 14 (1985), 1123-1136. DOI 10.1080/03610928508828965 | MR 0797636 | Zbl 0585.62070
[30] Watson, G. S.: Smooth regression analysis. Sankhya, Ser. A 26 (1964), 359-372. MR 0185765 | Zbl 0137.13002
Partner of
EuDML logo