Previous |  Up |  Next

Article

Keywords:
spacelike submanifolds; indefinite space form
Summary:
In this paper, we get an intrinsic inequality for spacelike submanifolds in indefinite space form $M^{n+p}_p(c)$, $(c>0)$. We also get some rigidity theorems for such spacelike submanifolds.
References:
[1] Chen, B. Y.: Geometry of Submanifolds. Marcel Dekker, New York, 1973. MR 0353212 | Zbl 0262.53036
[2] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. DOI 10.1007/BF01425237 | MR 0431043 | Zbl 0349.53041
[3] Dong, Y. X.: Bernstein theorems for space-like graphs with parallel mean curvature and controlled growth. J. Geom. Phys. 58 (2008), 324–333. DOI 10.1016/j.geomphys.2007.11.007 | MR 2394041 | Zbl 1147.53043
[4] Liu, X. M.: Space-like submanifolds with constant scalar curvature. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 729–734. DOI 10.1016/S0764-4442(01)01921-8 | MR 1843196 | Zbl 1028.53059
[5] Pang, H. D., Xu, S. L., Dai, Sh.: Spacelike hypersurfaces in de sitter space. J. Geom. Phys. 42 (2002), 78–84. DOI 10.1016/S0393-0440(01)00075-4 | MR 1894077 | Zbl 1005.83013
[6] Wu, B. Y.: On the volume Gauss map image of spacelike submanifolds in de Sitter space form. J. Geom. Phys. 53 (2005), 336–344. DOI 10.1016/j.geomphys.2004.07.003 | MR 2108534
[7] Wu, B. Y.: On the mean curvature of spacelike submanifolds in semi-Riemannian manifolds. J. Geom. Phys. 56 (2006), 1728–1735. DOI 10.1016/j.geomphys.2005.10.008 | MR 2240419 | Zbl 1097.53043
Partner of
EuDML logo