[1] D. Cox, J. Little, and D. O’Shea:
Ideals, Varieties, and Algorithms. Springer, New York 1992.
MR 1189133
[2] D. E. Critchlow, M. A. Fligner, and J. S. Verducci:
Probability models on rankings. J. Math. Psych. 35 (1991), 294–318.
MR 1128236
[3] V. Csiszár:
Conditional independence relations and log-linear models for random matchings. Acta Math. Hungar. (2008), Online First.
MR 2487466
[4] P. Diaconis and N. Eriksson:
Markov bases for noncommutative Fourier analysis of ranked data. J. Symbolic Comput. 41 (2006), 173–181.
MR 2197153
[5] P. Diaconis and B. Sturmfels:
Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26 (1998), 363–397.
MR 1608156
[6] A. Dobra:
Markov bases for decomposable graphical models. Bernoulli 9 (2003), 1093–1108.
MR 2046819 |
Zbl 1053.62072
[7] M. A. Fligner and J. S. Verducci (eds.):
Probability Models and Statistical Analyses for Ranking Data. Springer, New York 1993.
MR 1237197
[8] 4ti2 team: 4ti2 – A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at www.4ti2.de.
[9] D. Geiger, C. Meek, and B. Sturmfels:
On the toric algebra of graphical models. Ann. Statist. 34 (2006), 1463–1492.
MR 2278364
[11] J. I. Marden:
Analyzing and Modelling Rank Data. Chapman and Hall, London 1995.
MR 1346107
[12] G. Pistone, E. Riccomagno, and H. P. Wynn:
Algebraic Statistics. Chapman and Hall/CRC, Bocan Raton 2000.
MR 2332740
[13] F. Rapallo:
Toric statistical models: parametric and binomial representations. Ann. Inst. Statist. Math. 59 (2007), 727–740.
MR 2397736 |
Zbl 1133.62343
[14] B. Sturmfels:
Gröbner bases and convex polytopes. Amer. Math. Soc., Providence RI 1996.
MR 1363949 |
Zbl 0856.13020
[15] S. Sullivant:
Toric Ideals in Algebraic Statistics. Ph.D. Thesis, University of California, Berkeley 2005.
MR 2623019
[16] A. Takemura and S. Aoki:
Some characterizations of minimal Markov basis for sampling from discrete conditional distributions. Ann. Inst. Statist. Math. 56 (2004), 1–17.
MR 2053726