[2] P. J. Diggle: Binary mosaics and the spatial pattern of heather. Biometrics 37 (1981), 531–539.
[3] I. Molchanov: Statistics of the Boolean Model for Practitionars and Mathematicians. Wiley, New York 1997.
[4] J. Møller and K. Helisová:
Power diagrams and interaction processes for union of discs. Adv. in Appl. Probab. (SGSA) 40 (2008), 1–27.
MR 2431299
[5] J. Møller and R. P. Waagepetersen:
Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, London 2004
MR 2004226
[6] T. Mrkvička and J. Rataj:
On estimation of intrinsic volume densities of stationary random closed sets. Stochastic Process. Appl. 118/2 (2008), 213–231.
MR 2376900
[7] W. Nagel, J. Ohser, and K. Pischang: An integral-geometric approach for the Euler–Poincaré characteristic of spatial images. J. Microsc. 198 (2000), 54–62.
[8] Ohser J. and F. Mücklich: Statistical Analysis of Microstructures in Materials Science. Wiley, Chichester 2000.
[9] J. Rataj:
On estimation of the Euler number by projections of thin slabs. Adv. in Appl. Probab. 36 (2004), 715–724.
MR 2079910 |
Zbl 1070.60010
[10] J. Rataj:
Estimation of intrinsic volumes from parallel neighbourhoods. Suppl. Rend. Circ. Mat. Palermo, Ser. II 77 (2006), 553-563.
MR 2245722 |
Zbl 1101.62084
[11] V. Schmidt and E. Spodarev:
Joint estimators for the specific intrinsic volumes of stationary random sets. Stochastic Process. Appl. 115 (2005), 959–981.
MR 2138810
[12] R. Schneider:
Convex Bodies. The Brunn–Minkowski Theory. Cambridge Univ. Press, Cambridge 1993.
MR 1216521 |
Zbl 1168.52002
[13] R. Schneider and W. Weil:
Stochastische Geometrie. Teubner, Stuttgart 2000.
MR 1794753
[14] D. Stoyan, W. S. Kendall, and J. Mecke:
Stochastic Geometry and Its Applications. Second edition. Wiley, Chichester 1995.
MR 0895588