[1] L. Chen and A. Jüngel:
Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2006), 301–322.
MR 2083864
[2] L. Chen and A. Jüngel:
Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differential Equations 224 (2006), 39–59.
MR 2220063
[3] E. N. Dancer, D. Hilhorst, M. Mimura, and L. A. Peletier:
Spatial segregation limit of a competition-diffusion system. European J. Appl. Math. 10 (1999), 97–115.
MR 1687440
[4] D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya:
A competition-diffusion system approximation to the classical two-phase Stefan problem. Japan J. Indust. Appl. Math. 18 (2001), 161–180.
MR 1842906
[5] D. Hilhorst, M. Iida, M. Mimura, and H. Ninomiya:
Relative compactness in $L^p$ of solutions of some $2m$ components competition-diffusion systems. Discrete Contin. Dyn. Syst. 21 (2008), 1, 233–244.
MR 2379463
[6] D. Hilhorst, M. Mimura, and H. Ninomiya:
Fast reaction limit of competition-diffusion systems. In: Handbook of Differential Equations: Evolutionary Equations Vol. 5 (C. M. Dafermos and M. Pokorny, eds.). Elsevier/North Holland, Amsterdam 2009, pp. 105–168.
MR 2562164
[7] M. Iida, M. Mimura, and H. Ninomiya:
Diffusion, cross-diffusion and competitive interaction. J. Math. Biol. 53 (2006), 617–641.
MR 2251792
[8] T. Kadota and K. Kuto:
Positive steady states for a prey-predator model with some nonlinear diffusion terms. J. Math. Anal. Appl. 323 (2006), 1387–1401.
MR 2260190
[9] R. Kersner:
Nonlinear heat conduction with absorption: space localization and extinction in finite time. SIAM J. Appl. Math. 43 (1983), 1274–1285.
MR 0722941 |
Zbl 0536.35039
[10] P. Knabner:
Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien. Verlag Peter Lang, Frankfurt 1991.
MR 1218175 |
Zbl 0731.35054
[11] H. Murakawa:
On reaction-diffusion system approximations to the classical Stefan problems. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University 2006, pp. 117–125.
MR 2279052 |
Zbl 1144.80365
[12] H. Murakawa:
Reaction-diffusion system approximation to degenerate parabolic systems. Nonlinearity 20 (2007), 2319–2332.
MR 2356112
[13] H. Murakawa:
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem. Nonlinear Anal. 69 (2008), 3512–3524.
MR 2450556 |
Zbl 1158.35379
[14] H. Murakawa: A Solution of Nonlinear Degenerate Parabolic Problems by Semilinear Reaction-Diffusion Systems. Ph.D. Thesis, Graduate School of Mathematics, Kyushu University, 2008.
[15] H. Murakawa: Discrete-time approximation to nonlinear degenerate parabolic problems using a semilinear reaction-diffusion system. Preprint.
[16] H. Murakawa: A relation between cross-diffusion and reaction-diffusion. Preprint.
[17] R. H. Nochetto:
A note on the approximation of free boundaries by finite element methods. RAIRO Modél. Math. Anal. Numér. 20 (1986), 355–368.
MR 0852686 |
Zbl 0596.65092
[18] A. Okubo and S. A. Levin:
Diffusion and Ecological Problems: Modern Perspectives. Second edition. (Interdisciplinary Applied Mathematics 14.) Springer–Verlag, New York 2001.
MR 1895041
[19] N. Shigesada, K. Kawasaki, and E. Teramoto:
Spatial segregation of interacting species. J. Theor. Biol. 79 (1979), 83–99.
MR 0540951
[20] K. Tomoeda: Support re-splitting phenomena caused by an interaction between diffusion and absorption. Proc. Equadiff–11 2005, pp. 499–506.