[1] I. Aguiló, J. Suñer, and J. Torrens:
Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems (2007), doi: 10.1016/j.fss2007.10.004.
MR 2419976
[2] C. Alsina, M. J. Frank, and B. Schweizer:
Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Co., Singapore 2006.
MR 2222258
[3] P. Deheuvels:
La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292.
MR 0573609 |
Zbl 0422.62037
[4] A. Erdely, J. M. González-Barrios, and R. B. Nelsen:
Symmetries of random discrete copulas. Kybernetika 44 (2008), 6, 846–863.
MR 2488911
[6] S. Jenei:
On the convex combination of left-continuous $t$-norms. Aequationes Mathematicae 72 (2006), 47–59.
MR 2258806 |
Zbl 1101.39010
[8] E. P. Klement, R. Mesiar, and E. Pap:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096
[9] E. P. Klement and R. Mesiar:
Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005.
MR 2166082
[10] E. P. Klement and R. Mesiar:
How non-symmetric can a copula be? Comment. Math. Univ. Carolinae 47 (2006), 1, 141–148.
MR 2223973
[11] A. Kolesárová, R. Mesiar, J. Mordelová, and C. Sempi: Discrete Copulas. IEEE Trans. Fuzzy Systems 14 (2006), 698–705.
[12] A. Kolesárová and J. Mordelová: Quasi-copulas and copulas on a discrete scale. Soft Computing 10 (2006), 495–501.
[13] E. L. Lehmann:
Nonparametric Statistical Methods Based on Ranks. Revised first edition. Springer, New York 2006.
MR 2279708
[14] G. Mayor, J. Suñer, and J. Torrens: Copula-like operations on finite settings. IEEE Trans. Fuzzy Systems 13 (2005), 468–477.
[15] G. Mayor, J. Suñer, and J. Torrens: Sklar’s Theorem in finite settings. IEEE Trans. Fuzzy Systems 15 (2007), 410–416.
[16] R. Mesiar: Discrete copulas – what they are. In: Prof. Joint EUSFLAT-LFA 2005 (E. Montsenyand P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930.
[19] B. Schweizer and A. Sklar:
Probabilistic Metric Spaces. North-Holland, New York 1983.
MR 0790314