[1] J. F. Banzhaf: Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Review 19 (1965), 317–343.
[2] J. M. Bilbao, E. Lebrón, and N. Jiménez:
Probabilistic values on convex geometries. Ann. Oper. Res. 84 (1998), 79–95.
MR 1672378
[3] E. M. Bolger:
Power indices for multicandidate voting games. Internat. J. Game Theory 15 (1986), 175–186.
MR 0857012 |
Zbl 0611.90106
[4] E. M. Bolger:
A value for games with $n$ players and $r$ alternatives. Internat. J. Game Theory 22 (1993), 319–334.
MR 1251183 |
Zbl 0793.90101
[5] E. M. Bolger:
A consistent value for games with $n$ players and $r$ alternatives. Internat. J. Game Theory 29 (2000), 93–99.
MR 1745874 |
Zbl 1034.91001
[6] E. Lehrer:
An axiomatization of the Banzhaf value. Internat J. Game Theory 17 (1988), 89–99.
MR 0944144 |
Zbl 0651.90097
[8] R. Ono: Values for multialternative games and multilinear extensions. In: Power Indices and Coalition Formation (M. Holler and G. Owen, eds.), Kluwer Academic Publishers, Dordrecht 2001, pp. 63–86.
[9] L. S. Shapley:
A value for $n$-person games. In: Contributions to the Theory of Games II (H. Kuhn and A. Tucker, eds.), Princeton 1953, pp. 307–317.
MR 0053477 |
Zbl 0701.90097
[10] M. Tsurumi, M. Inuiguchi, and T. Tanino: A solution for fuzzy generalized multi-alternative games. In: The 2006 NOLTA Proc. 2006, pp. 95–98.