Previous |  Up |  Next

Article

Keywords:
multi-agent systems; parametrization; geometric structures; coordination control
Summary:
In this paper, we address distributed control structures for multi-agent systems with linear controlled agent dynamics. We consider the parametrization and related geometric structures of the coordination controllers for multi-agent systems with fixed topologies. Necessary and sufficient conditions to characterize stabilizing consensus controllers are obtained. Then we consider the consensus for the multi-agent systems with switching interaction topologies based on control parametrization.
References:
[1] A. Ben-Israel and T. N. E. Greville: Generalized Inverses. Wiley, New York 1972.
[2] Y. Cao, Y. Sun, and J. Lam: Simultaneous stabilization via static output feedback and state feedback. IEEE Trans. Automat. Control 44 (1999), 1277–1282. MR 1689151
[3] J. A. Fax and R. M. Murray: Information flow and cooperative control of vehicle formation. IEEE Trans. Automat. Control 49 (2004), 1465–1476. MR 2086912
[4] C. Godsil and G. Royle: Algebraic Graph Theory. Springer-Verlag, New York 2001. MR 1829620
[5] Y. Hong, L. Gao, D. Cheng, and J. Hu: Lyapuov-based approach to multi-agent systems with switching jointly connected interconnection. IEEE Trans. Automat. Control 52 (2007), 943–948. MR 2324260
[6] R. A. Horn and C. R. Johnson: Matrix Theory. Cambridge University Press, Cambridge 1986.
[7] J. Imura and T. Yoshikawa: Parametrization of all stabilizing controllers of nonlinear systems. Systems Control Lett. 29 (1997), 207–213. MR 1428418
[8] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman: Decentralized control of vehicle formations. Systems Control Lett. 54 (2005), 899–910. MR 2152868
[9] R. A. Luke, P. Dorato, and C. T. Abdallah: A survey of state feedback simultaneous stabilization techniques.
[11] R. Ober: Balanced parametrization of classes of linear systems. SIAM J. Control Optim. 29 (1991), 1251–1287. MR 1132182 | Zbl 0741.93010
[12] A. Ohara and S. Amari: Differential geometric structures of stable state feedback systems with dual connections. Kybernetika 30 (1994), 369–386. MR 1303289
[13] A. Ohara and T. Kitamori: Geometric stuctures of stable state feedback systems. IEEE Trans. Automat. Control 38 (1993), 1579–1583. MR 1242914
[14] R. Olfati-Saber and R. M. Murray: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520–1533. MR 2086916
[15] W. Ren and E. Atkins: Second-order consensus protocols in multiple vehicle systems with local interactions. Proc. AIAA Guidance, Navigation, Control Conf. San Francisco, CA, 2005, Paper AIAA-2005-6238.
[16] X. Wang and Y. Hong: Finite-time consensus for multi-agent networks with second-order agent dynamics. In: IFAC World Congress, Korea 2008, pp. 15185–15190.
[17] M. Vidyasagar: Nonlinear Systems Analysis. Enflewood Cliffs, Prentice Hall, N.J. 1993. Zbl 1006.93001
Partner of
EuDML logo