Previous |  Up |  Next

Article

Keywords:
copula; diagonal section; opposite diagonal section; orbital semilinear copula; semilinear copula
Summary:
We introduce four families of semilinear copulas (i.e. copulas that are linear in at least one coordinate of any point of the unit square) of which the diagonal and opposite diagonal sections are given functions. For each of these families, we provide necessary and sufficient conditions under which given diagonal and opposite diagonal functions can be the diagonal and opposite diagonal sections of a semilinear copula belonging to that family. We focus particular attention on the family of orbital semilinear copulas, which are obtained by linear interpolation on segments connecting the diagonal and opposite diagonal of the unit square.
References:
[1] B. De Baets, H. De Meyer, and R. Mesiar: Asymmetric semilinear copulas. Kybernetika 43 (2007), 221–233. MR 2343397
[2] B. De Baets, H. De Meyer, and M. Úbeda-Flores: Opposite diagonal sections of quasi-copulas and copulas. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 17 (2009), 481–490. MR 2591399
[3] B. De Baets, H. De Meyer, and M. Úbeda-Flores: Constructing copulas with given diagonal and opposite diagonal sections. Comm. Statist. – Theory Methods, to appear.
[4] F. Durante and P. Jaworski: Absolutely continuous copulas with given diagonal sections. Comm. Statist. – Theory Methods 37 (2008), 2924–2942. MR 2467742
[5] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi: Copulas with given diagonal sections, novel constructions and applications. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 15 (2007), 397–410. MR 2362234
[6] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi: Semilinear copulas. Fuzzy Sets and Systems 159 (2008), 63–76. MR 2371303
[7] F. Durante, R. Mesiar, and C. Sempi: On a family of copulas constructed from the diagonal section. Soft Computing 10 (2006), 490–494.
[8] A. Erdely and J. M. González-Barrios: On the construction of families of absolutely continuous copulas with given restrictions. Comm. Statist. – Theory Methods 35 (2006), 649–659. MR 2282880
[9] P. Jaworski and T. Rychlik: On distributions of order statistics for absolutely continuous copulas with applications to reliability. Kybernetika 44 (2008), 757–776. MR 2488903
[10] H. Joe: Multivariate Models and Dependence Concepts. Chapman & Hall, London 1997. MR 1462613 | Zbl 0990.62517
[11] E. Klement and A. Kolesárová: Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators. Kybernetika 43 (2005), 329–348. MR 2181422
[12] R. Nelsen: An Introduction to Copulas. Second edition. Springer, New York, 2006. MR 2197664 | Zbl 1152.62030
[13] R. Nelsen and G. Fredricks: Diagonal copulas. In: Distributions with given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1977, pp. 121–127. MR 1614665
[14] R. Nelsen, J. Quesada-Molina, J. Rodríguez-Lallena, and M. Úbeda-Flores: On the construction of copulas and quasi-copula with given diagonal sections. Insurance: Math. Econ. 42 (2008), 473–483. MR 2404309
[15] A. Sklar: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231. MR 0125600
[16] M.-H. Zhang: Modelling total tail dependence along diagonals. Insurance: Math. Econ. 42 (2008), 73–80. MR 2392071 | Zbl 1142.62097
Partner of
EuDML logo