[1] Baer, R. M.:
Computability by normal algorithms. Proc. Am. Math. Soc. 20 (1969), 551–552.
MR 0255401
[4] Deutsch, D.:
Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. Roy. Soc. London Ser. A 400 (1985), 97–117.
MR 0801665 |
Zbl 0900.81019
[5] Fischler, W., Morgan, D., Polchinski, J.:
Quantization of false-vacuum bubbles; a Hamiltonian treatement of gravitational tunneling. Phys. Rev. D 42 (1990), 4042–4055.
MR 1082899
[6] Gandy, R.:
The confluence of ideas in 1936. In The Universal Turing Machine: A Half-Century Survey (R. Herken, ed.), Hamburg: Kammerer & Unverzagt (1988).
MR 1011468 |
Zbl 0689.01010
[7] Goodman, N. D.:
Intensions, Church’s Thesis, and the formalization of mathematics. Notre Dame J. Formal Logic 28 (1987), 473–489.
MR 0912643 |
Zbl 0656.03004
[8] Kleene, S. C.:
Reflections on Church’s thesis. Notre Dame J. Formal Logic 28 (1987), 490–498.
MR 0912644 |
Zbl 0649.03001
[9] Kreisel, G.:
Church’s thesis and the ideal of formal rigour. Notre Dame J. Formal Logic 28 (1987), 499–519.
MR 0912645
[10] Kreisel, G.:
Church’s Thesis: a kind of reducibility axiom for constructive mathematics. In Intuicionism and Proof Theory: Proceedings of the Summer Conference at Buffalo, N. Y. (A. Kino, J. Myhill, R. E. Vesley, eds.), Amsterdam: North-Holland (1970).
MR 0278903 |
Zbl 0199.30001
[11] Lopez-Escobar, E. G. K.:
Remarks on an infinitary language with constructive formulas. J. Symbol. Logic 32 (1967), 305–318.
MR 0230608
[12] Lopez-Escobar, E. G. K.:
Infinite rules in finite systems. In Nonclassical Logics, Model Theory and Computability (A. I. Arruda, N. C. A da Costa, and R. Chuaqui, eds.), Amsterdam: North-Holland (1977).
MR 0476477 |
Zbl 0386.03026
[13] Rosen, R.:
Church’s Thesis and its relation to the concept of realizability in biology and physics. Bull. Math. Biophys. 24 (1962), 375–393.
Zbl 0118.34605