Previous |  Up |  Next

Article

Keywords:
closure operator; closure space; biclosure space; $\partial$-closed set; $\partial$-continuous map
Summary:
In the present paper, we introduce and study the concept of $\partial $-closed sets in biclosure spaces and investigate its behavior. We also introduce and study the concept of $\partial $-continuous maps.
References:
[1] Čech, E.: Topological Spaces. Topological Papers of Eduard Čech, Academia, Prague (1968), 436–472
[2] Chvalina, J.: On homeomorphic topologies and equivalent set-systems. Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII (1976), 107–116 MR 0438267 | Zbl 0349.54002
[3] Chvalina, J.: Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings. Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XVII (1981), 81–86 MR 0673249 | Zbl 0478.54001
[4] Dujunji, J.: Topology. Allyn and Bacon, Boston, 1966 MR 0193606
[5] Gupta, M. K., Singh, Rupen Pratap: On fuzzy pairwise s-continuous and fuzzy pairwise s-open mapping. Int. J. Pure & Appl. Math. Sci. 1 (2004), 101–109
[6] Kelly, K. C.: Bitopological spaces. Pro. London Math. Soc. 3(13) (1969), 71–79 MR 0143169
[7] Noiri, T., Popa, V.: Some properties of weakly open functions in bitopological spaces. Novi Sad J. Math. 36 (1) (2006), 47–54 MR 2301925 | Zbl 1164.54366
[8] Sen, S. K., Mukherjee, M. N.: On extension of pairwise $\theta $-continuous maps. Internat. J. Math. Sci. 19 (1) (1966), 53–56 MR 1361976
[9] Skula, L.: Systeme von stetigen abbildungen. Czech. Math. J., 17 (92) (1967), 45–52 MR 0206917 | Zbl 0173.24803
[10] Šlapal, J.: Closure operations for digital topology. Theoret. Comput. Sci., 305 (2003), 457–471 DOI 10.1016/S0304-3975(02)00708-9 | MR 2013581 | Zbl 1081.68111
Partner of
EuDML logo