Previous |  Up |  Next

Article

Keywords:
Residuated $\ell $-monoid; deductive system; $\mathit {BL}$-algebra; $\mathit {MV}$-algebra; Heyting algebra; filter
Summary:
Bounded commutative residuated lattice ordered monoids ($R\ell $-monoids) are a common generalization of $\mathit {BL}$-algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative $R\ell $-monoids.
References:
[1] Balbes, R., Dwinger, P.: Distributive Lattices. Univ. of Missouri Press, Columbia, Missouri, 1974. MR 0373985 | Zbl 0321.06012
[2] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000. MR 1786097
[3] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell $-monoids. Discrete Mathematics 306 (2006), 1317–1326. MR 2237716 | Zbl 1105.06011
[4] Font, J. M., Rodriguez, A. J., Torrens, A.: Wajsberg algebras. Stochastica 8 (1984), 5–31. MR 0780136 | Zbl 0557.03040
[5] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht, 1998. MR 1900263
[6] Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Comput. 2 (1998), 124–128.
[7] Haveshki, M., Saeid, A. B., Eslami, E.: Some types of filters in $\mathit {BL}$-algebras. Soft Comput 10 (2006), 657–664.
[8] Iorgulescu, A.: Classes of BCK algebras – Part I. Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 1/2004, 1–33. MR 2099263
[9] Iorgulescu, A.: Classes of BCK algebras – Part III. Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 3/2004, 1–37. MR 2099263
[10] Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: J. Martinez, (ed.): Ordered algebraic structures. Kluwer Acad. Publ., Dordrecht, 2002, 19–56. MR 2083033 | Zbl 1070.06005
[11] Kondo, M., Dudek, W. A.: Filter theory of $\mathit {BL}$-algebras. Soft Comput. 12 (2008), 419–423.
[12] Rachůnek, J.: $\mathit {MV}$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups. Math. Bohemica 123 (1998), 437–441. MR 1667115
[13] Rachůnek, J.: A duality between algebras of basic logic and bounded representable $DR\ell $-monoids. Math. Bohemica 126 (2001), 561–569. MR 1970259
[14] Rachůnek, J., Šalounová, D.: Boolean deductive systems of bounded commutative residuated $\ell $-monoids. Contrib. Gen. Algebra 16 (2005), 199–208. Zbl 1081.06014
[15] Rachůnek, J., Šalounová, D.: Local bounded commutative residuated $\ell $-monoids. Czechoslovak Math. J. 57 (2007), 395–406. MR 2309973 | Zbl 1174.06331
[16] Rachůnek, J., Slezák, V.: Negation in bounded commutative $DR\ell $-monoids. Czechoslovak Math. J. 56 (2006), 755–763. Zbl 1164.06325
[17] Rachůnek, J., Slezák, V.: Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca 56 (2006), 223–233. MR 2229343 | Zbl 1150.06015
[18] Swamy, K. L. N.: Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71–74. MR 0200364 | Zbl 0158.02601
[19] Turunen, E.: Boolean deductive systems of $BL$-algebras. Arch. Math. Logic 40 (2001), 467–473. MR 1854896 | Zbl 1030.03048
Partner of
EuDML logo