[1] Balbes, R., Dwinger, P.:
Distributive Lattices. Univ. of Missouri Press, Columbia, Missouri, 1974.
MR 0373985 |
Zbl 0321.06012
[2] Cignoli, R., D’Ottaviano, I. M. L., Mundici, D.:
Algebraic Foundations of Many-valued Reasoning. Kluwer Acad. Publ., Dordrecht, 2000.
MR 1786097
[3] Dvurečenskij, A., Rachůnek, J.:
Probabilistic averaging in bounded commutative residuated $\ell $-monoids. Discrete Mathematics 306 (2006), 1317–1326.
MR 2237716 |
Zbl 1105.06011
[4] Font, J. M., Rodriguez, A. J., Torrens, A.:
Wajsberg algebras. Stochastica 8 (1984), 5–31.
MR 0780136 |
Zbl 0557.03040
[5] Hájek, P.:
Metamathematics of Fuzzy Logic. Kluwer Acad. Publ., Dordrecht, 1998.
MR 1900263
[6] Hájek, P.: Basic fuzzy logic and BL-algebras. Soft Comput. 2 (1998), 124–128.
[7] Haveshki, M., Saeid, A. B., Eslami, E.: Some types of filters in $\mathit {BL}$-algebras. Soft Comput 10 (2006), 657–664.
[8] Iorgulescu, A.:
Classes of BCK algebras – Part I. Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 1/2004, 1–33.
MR 2099263
[9] Iorgulescu, A.:
Classes of BCK algebras – Part III. Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 3/2004, 1–37.
MR 2099263
[10] Jipsen, P., Tsinakis, C.:
A survey of residuated lattices. In: J. Martinez, (ed.): Ordered algebraic structures. Kluwer Acad. Publ., Dordrecht, 2002, 19–56.
MR 2083033 |
Zbl 1070.06005
[11] Kondo, M., Dudek, W. A.: Filter theory of $\mathit {BL}$-algebras. Soft Comput. 12 (2008), 419–423.
[12] Rachůnek, J.:
$\mathit {MV}$-algebras are categorically equivalent to a class of $DR\ell _{1(i)}$-semigroups. Math. Bohemica 123 (1998), 437–441.
MR 1667115
[13] Rachůnek, J.:
A duality between algebras of basic logic and bounded representable $DR\ell $-monoids. Math. Bohemica 126 (2001), 561–569.
MR 1970259
[14] Rachůnek, J., Šalounová, D.:
Boolean deductive systems of bounded commutative residuated $\ell $-monoids. Contrib. Gen. Algebra 16 (2005), 199–208.
Zbl 1081.06014
[15] Rachůnek, J., Šalounová, D.:
Local bounded commutative residuated $\ell $-monoids. Czechoslovak Math. J. 57 (2007), 395–406.
MR 2309973 |
Zbl 1174.06331
[16] Rachůnek, J., Slezák, V.:
Negation in bounded commutative $DR\ell $-monoids. Czechoslovak Math. J. 56 (2006), 755–763.
Zbl 1164.06325
[17] Rachůnek, J., Slezák, V.:
Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca 56 (2006), 223–233.
MR 2229343 |
Zbl 1150.06015
[18] Swamy, K. L. N.:
Dually residuated lattice ordered semigroups III. Math. Ann. 167 (1966), 71–74.
MR 0200364 |
Zbl 0158.02601
[19] Turunen, E.:
Boolean deductive systems of $BL$-algebras. Arch. Math. Logic 40 (2001), 467–473.
MR 1854896 |
Zbl 1030.03048