Previous |  Up |  Next

Article

Keywords:
Simply isotropic space; density; measurability
Summary:
The measurable sets of pairs of intersecting non-isotropic straight lines of type $\beta $ and the corresponding densities with respect to the group of general similitudes and some its subgroups are described. Also some Crofton-type formulas are presented.
References:
[1] Borisov, A.: Integral geometry in the Galilean plane. Research work qualifying for a degree full-professor, Sofia, 1998.
[2] Borisov, A. V., Spirova, M. G.: Crofton-type formulas relating sets of pairs of intersecting nonisotropic straight lines in the simply isotropic space. Tensor 67 (2006), 243–253. MR 2361199
[3] Deltheil, R.: Sur la théorie des probabilité géométriques. Thése Ann. Fac. Sc. Univ. Toulouse 11 (1919), 1–65. MR 1508362
[4] Drinfel’d, G. I.: On the measure of the Lie groups. Zap. Mat. Otdel. Fiz. Mat. Fak. Kharkov. Mat. Obsc. 21 (1949), 47–57 (in Russian). MR 0082632
[5] Drinfel’d, G. I., Lucenko, A. V.: On the measure of sets of geometric elements. Vest. Kharkov. Univ. 31, 3 (1964), 34–41 (in Russian). MR 0196037
[6] Lucenko, A. V.: On the measure of sets of geometric elements and thear subsets. Ukrain. Geom. Sb. 1, 3 (1965), 39–57 (in Russian). MR 0213983
[7] Sachs, H.: Ebene isotrope Geometrie. Friedr. Vieweg and Sohn, Braunschweig, 1987. MR 0908294 | Zbl 0625.51001
[8] Sachs, H.: Isotrope Geometrie des Raumes. Friedr. Vieweg and Sohn, Braunschweig–Wiesbaden, 1990. MR 1059891 | Zbl 0703.51001
[9] Santaló, L. A., London: Integral Geometry and Geometric Probability. Addison-Wesley, London, 1976. MR 0433364
[10] Stoka, M. I.: Geometrie Integrala. Ed. Acad. RPR, Bucuresti, 1967. MR 0217747
[11] Strubecker, K.: Differentialgeometrie des isotropen Raumes I. Sitzungsber. Österr. Akad. Wiss. Wien 150 (1941), 1–53. MR 0018957
[12] Strubecker, K.: Differentialgeometrie des isotropen Raumes II, III, IV, V. Math. Z. 52 (1949), 525–573. MR 0029201
Partner of
EuDML logo