Previous |  Up |  Next

Article

Keywords:
inhomogeneous Diophantine approximation; Khintchine type theorem; metric theory of Diophantine approximation; p-adic numbers
Summary:
We prove an analogue of the convergence part of Khintchine’s theorem for the simultaneous inhomogeneous Diophantine approximation on the Veronese curve $(x,x^2,\ldots ,x^n)$ with respect to the different valuations. It is an extension of the author’s earlier results.
References:
[1] Baker A.: On a theorem of Sprindz̆uk. Proc. Roy. Soc. London Ser. A 242 (1966), 92-104.
[2] Beresnevich V., Bernik V., Kleinbock D., Margulies G.A. : Metric Diophantine approximation: the Khintchine-Groshev theorem for non-degenerate ma nifolds. Moscow Math. J. 2 (2002), 203-225. MR 1944505
[3] Beresnevich V.V., Bernik V.I., Kovalevskaya E.I. : On approximation of $p$-adic numbers by $p$-adic algebraic numbers. J. Number Theory 111 (2005), 33-56. DOI 10.1016/j.jnt.2004.09.007 | MR 2124042 | Zbl 1078.11050
[4] Bernik V.I., Borbat V.N.: Simultaneous approximation of zero values of integral polynomials in $\mathbb {Q}_p$. Proc. of the Steklov Institute of Math. 218 (1997), 53-68 (translated by S.Varhromeev/MAHK Hayka /Interperiodica Publishing (Russia)). MR 1642345
[5] Bernik V.I., Dickinson H., Dodson M.: Approximation of real numbers by integral polynomials. Dokl. Nats. Akad. Nayk Belarusi 42 (1997), 51-54.
[6] Bernik V., Dickinson H., Yuan J.: Inhomogeneous diohantine approximation on polynomials. Acta Arith. 90 (1999), 37-48. MR 1708696
[7] Bernik V.I., Dodson M.M.: Metric Diophantine approximation on manifolds. Cambridge Tracts in Math. Vol. 137. Cambridge Univ. Press, 1999. MR 1727177 | Zbl 0933.11040
[8] Bernik V.I., Kalosha N.I.: Simultaneous approximation of zero values of integral polynomials in $\mathbb {R}\times \mathbb {Q}_p$. Dokl. Nats. Akad. Nauk Belarusi. 47 (2003), 19-22. MR 2163815
[9] Bernik V., Kleinbock D., Margulies G.A. : Khintchine type theorems on manifolds: the convergence case for standard and multiplicative versions. Int. Math. Research Notices. 9 (2001), 453-486. DOI 10.1155/S1073792801000241 | MR 1829381
[10] Bugeaud Y.: Approximation by algebraic numbers. Cambridge Tracts in Math. 169, Cambridge Univ. Press, Cambridge, 2004. MR 2136100 | Zbl 1155.11003
[11] Giong, Pan. : Metric inhomogeneous Diophantine approximation on polynomial curves in $\mathbb {Q}_p$ (to appear).
[12] Harman G.: Metric Number Theory. LMS Monograph. New Series. Vol. 18. Claredon Press, 1998. MR 1672558 | Zbl 1081.11057
[13] Kleinbock D., Margulies G.A. : Flows on homogeneous space and Diophantine approximation on manifolds. Ann. Math. 148 (1998), 339-360. DOI 10.2307/120997 | MR 1652916
[14] Kleinbock D., Tomanov G. : Flows on $S$-arithmetic homogeneous space and application to metric Diophantine approximation. Preprint Max Plank Institute. Bonn. 2003-65 (2003). MR 2314053
[15] Kovalevskaya E.I.: A metric theorem on the exact order of approximation of zero by values of integral polynomials in $\mathbb {Q}_p$. Dokl. Nats. Akad. Nauk Belarusi. 43 (1999), 34-36. MR 1741903
[16] Kovalevskaya E. : Simultaneous approximation of zero by values of integral polynomials with respect to different valuations. Math. Slovaca. 54 (2004), 479-486. MR 2114619 | Zbl 1108.11050
[17] Schmidt W.M.: Diophantine Approximation. Lecture Notes in Math. Vol. 785. Springer-Verlag, 1980. MR 0568710 | Zbl 0421.10019
[18] Sprindz̆uk V.G.: Mahler’s problem in metric Number Theory. Nauka i Tehnika, Minsk, 1967 [Transl. Math. Monogr. 25, Amer. Math. Soc., Providence, R.I., 1969]. (Russian) MR 0245526
[19] Sprindz̆uk V.G.: Metric Theory of Diophantine Approximation. Izdatel’stvo Nauka, Mos-kva, 1977 [Jihn Wiley, New York-Toronto-London, 1979 (translation by R. A. Silverman)]. (Russian) MR 0548467
[20] Z̆eludevich F.: Simultine diophantishe Approximationen abha̋ngiger Grőssen in mehreren Metriken. Acta Arithm. 46 (1986), 285-296.
[21] Ustinov A. E.: Inhomogeneous approximation on manifolds in $\mathbb {Q}_p$. Vestsi Nats. Akad. Nauk Belarusi. Ser. fiz.-mat. nauk. No 3 (2005), 30-34 MR 2210400
[22] Ustinov A. E.: Inhomogeneous approximation on manifolds in $\mathbb {C`}$. Vestsi Nats. Akad. Nauk Belarusi. Ser. fiz.-mat. nauk. No 1 (2006), 9-14. MR 2229813
Partner of
EuDML logo