Previous |  Up |  Next

Article

Keywords:
$p$-adic integral; $p$-adic measures; Bernoulli numbers; Genocchi numbers; Genocchi polynomials; tangent coefficients; Kummer congruences
Summary:
We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
References:
[1] Carlitz L.: Some congruences for Bernoulli numbers. Amer. J. Math. 75 (1953) 163-172. DOI 10.2307/2372625 | MR 0051871 | Zbl 0050.26703
[2] Carlitz L.: The Staudt-Clausen theorem. Math. Mag. 34 (1961) 131-146. DOI 10.2307/2688488 | MR 0130397 | Zbl 0122.04702
[3] Carlitz L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15 (1979) 51-88. MR 0531621 | Zbl 0404.05004
[4] Comtet L.: “Advanced Combinatorics. The Art of Finite and Infinite Expansions”. Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. MR 0460128 | Zbl 0283.05001
[5] Dumont D.: Interprètations combinatories des nombres de Genocchi. Duke Math. J. 41 (1974) 305-318. MR 0337643
[6] Dumont D. G. Vinnot: A combinatorial interpretation of the Siedel generation of Genocchi numbers. Ann. Discrete Math. 6 (1980) 77-87. DOI 10.1016/S0167-5060(08)70696-4 | MR 0593524
[7] Dumont D. A. Randrianarivony: Dèrangements et nombres de Genocchi. Discrete Math. 132 (1994) 37-49. DOI 10.1016/0012-365X(94)90230-5 | MR 1297370
[8] Dwork B.: “Lectures on $p$-Adic Differential Equations”. Springer-Verlag, New York, 1982. MR 0678093 | Zbl 0502.12021
[9] Fox G. J.: Kummer congruences for expressions involving generalized Bernoulli polynomials. J. Thèor. Nombres de Bordeaux 14 (2000) 187-204. DOI 10.5802/jtnb.353 | MR 1925997 | Zbl 1022.11008
[10] Howard F. T.: Applications of a recurrence for Bernoulli numbers. J. Number Theory 52 (1995) 157-172. DOI 10.1006/jnth.1995.1062 | MR 1331772
[11] Jang L., Kim T., Park D.-W.: Kummer congruences Bernoulli numbers of higher order. App. Math. Comput. 151 (2004) 589-593. DOI 10.1016/S0096-3003(03)00314-X | MR 2044223
[12] Yang Y., Kim D. S.: On higher order generalized Bernoulli numbers. App. Math. Comput. 137 (2003) 387-398. DOI 10.1016/S0096-3003(02)00138-8 | MR 1950105
[13] Nörlund N.: “Vorlesungen Über Differenzenrechnung”. Chelsea, New York, 1954.
[14] Ramanujan S.: “Collected Papers”. Chelsea, New York, 1962. MR 2280844
[15] Tsumura H.: On $p$-adic interpolation of the generalized Euler numbers and its applications. Tokyo J. Math. 10 (1987) 281-293. DOI 10.3836/tjm/1270134514 | MR 0926243
[16] Washington L.: “Introduction to Cyclotomic Fields”, Springer-Verlag. New York, 1982. MR 0718674
[17] Young P. T.: Congruences for Bernoulli, Euler and Stirling numbers. J. Number Theory 78 (1999) 204-227. DOI 10.1006/jnth.1999.2401 | MR 1713481 | Zbl 0939.11014
[18] Young P. T.: Kummer congruences for values of Bernoulli and Euler polynomials. Acta Arith. 99 (2001) 277-288. DOI 10.4064/aa99-3-5 | MR 1845351 | Zbl 0982.11008
[19] Young P. T.: Congruences for degenerate number sequences. Discrete Math. 270 (2003) 279-289. DOI 10.1016/S0012-365X(02)00839-7 | MR 1997904 | Zbl 1042.11015
[20] Young P. T.: Degenerate and $n$-adic versions of Kummer’s congruences for values of Bernoulli polynomials. Discrete Math. 285 (2004) 289-296. DOI 10.1016/j.disc.2004.03.011 | MR 2062851 | Zbl 1046.11011
Partner of
EuDML logo